Skip to main content
Log in

Can the data of Campbell and Robson be explained without assuming fourier analysis?

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Certain experiments on the detection of low-contrast gratings, occasionally cited as evidence of Fourier analysis within the visual system, are interpreted without the assumption of Fourier analysis. Theoretical curves are obtained and compared with the published experimental points, showing mostly satisfactory agreement. The computations utilize Gaussian receptive fields (on-center and off-center) for the retinal ganglion cells, spatial summation, center-surround antagonism, quasilinear response at low contrasts (X-cells), and the assumption that the first significant convergence is primarily between cells of like response type and like receptive field geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bishop, P.O.: Properties of afferent synapses and sensory neurones in the lateral geniculate nucleus. Int. Rev. Biol. 6, 191–255 (1964)

    Google Scholar 

  • Blakemore, C., Campbell, F.W.: On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images. J. Physiol. (Lond.) 203, 237–260 (1969)

    Google Scholar 

  • Blakemore, C., Nachmias, J., Sutton, P.: The perceived spatial frequency shift: evidence for frequency-selective neurones in the human brain. J. Physiol. (Lond.) 210, 727–750 (1970)

    Google Scholar 

  • Brooks, B., Jung, R.: Neuronal physiology of the visual cortex. In: Handbook of Sensory Physiology Vol. VII/3B, pp. 325–440 (Ed.: Jung, R.). Berlin, Heidelberg New York: Springer 1973

    Google Scholar 

  • Campbell, F.W., Cooper, G.F., Enroth-Cugell, C.: The spatial selectivity of the visual cells of the cat. J. Physiol. (Lond.) 203, 223–235 (1969)

    Google Scholar 

  • Campbell, F.W., Green, D.G.: Optical and retinal factors affecting visual resolution. J. Physiol. (Lond.) 181, 576–593 (1965)

    Google Scholar 

  • Campbell, F.W., Robson, J.G.: Application of Fourier analysis to the visibility of gratings. J. Physiol. (Lond.) 197, 551–566 (1968)

    Google Scholar 

  • Cleland, B.G., Dubin, M.W., Levick, W.R.: Sustained and transient neurones in the cat's lateral geniculate nucleus. J. Physiol. (Lond.) 217, 473–496 (1971)

    Google Scholar 

  • De Palma, J.J., Lowry, E.M.: Sine-wave response of the visual system. J. Opt. Soc. Am. 52, 328–335 (1962)

    Google Scholar 

  • Enroth-Cugell, C., Robson, J.G.: The contrast sensitivity of retinal ganglion cells of the cat. J. Physiol. (Lond.) 187, 517–552 (1966)

    Google Scholar 

  • Freund, H.-J.: Neuronal mechanisms of the lateral geniculate body. In: Handbook of Sensory Physiology Vol. VII/3B, pp. 177–246 (Ed.: Jung, R.). Berlin, Heidelberg, New York: Springer 1973

    Google Scholar 

  • Graham, N., Nachmias, J.: Detection of grating patterns containing two spatial frequencies: a comparison of single-channel and multiple-channel models. Vision Res. 11, 251–259 (1971)

    Google Scholar 

  • Harmon, L.D., Julesz, B.: Masking in visual recognition: effects of two-dimensional filtered noise. Science 180, 1194–1196 (1973)

    Google Scholar 

  • Hartline, H.K.: The response of single optic nerve fibers of the vertebrate eye to illumination of the retina. Amer. J. Physiol. 121, 400–415 (1938)

    Google Scholar 

  • Hartline, H.K.: The effects of spatial summation in the retina on the excitation of the fibers of the optic nerve. Amer. J. Physiol. 130, 700–711 (1940)

    Google Scholar 

  • Hoffmann, K.-P., Stone, J., Sherman, S.M.: Relay of receptive field properties in dorsal lateral geniculate nucleus of the cat. J. Neurophysiol. 35, 518–531 (1972)

    Google Scholar 

  • Hubel, D.H.: Integrative processes in the central visual pathways of the cat. J. Opt. Soc. Amer. 53, 58–66 (1963)

    Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Integrative action in the cat's lateral geniculate body. J. Physiol. (Lond.) 155, 385–398 (1961)

    Google Scholar 

  • Jung, R.: Neurophysiologic corticaler Neurone: ein Beitrag zur Koordination der Hirnrinde und des visuellen Systems. In: Structure and Function of the Cerebral Cortex (Tower, D.B., Schade, J.P. Eds.) Amsterdam: Elsevier 1959

    Google Scholar 

  • Jung, R., Baumgartner, G.: Hemmungsmechanismen und bremsende Stabilisierung an einzelnen Neuronen des optischen Cortex: ein Beitrag zur Koordination corticaler Erregungsvorgänge. Pflügers Arch. ges. Physiol. 261, 434–456 (1955)

    Google Scholar 

  • Kuffler, S.W.: Discharge patterns and functional organization of the mammalian retina. J. Neurophysiol. 16, 37–68 (1953)

    Google Scholar 

  • Maffei, L., Fiorentini, A.: The visual cortex as a spatial frequency analyzer. Vision Res. 13, 1255–1267 (1973)

    Google Scholar 

  • Maffei, L., Fiorentini, A., Bisti, S.: Neural correlate of perceptual adaptation to gratings. Science 182, 1036–1038 (1973)

    Google Scholar 

  • Pantle, A., Sekuler, R.: Size-detecting mechanisms in human vision. Science 162, 1146–1148 (1968)

    Google Scholar 

  • Poggio, G.F., Baker F.M., Lamarre, Y., Sanseverino, E.R.: Afferent inhibition at input to the visual cortex of the cat. J. Neurophysiol. 32, 892–915 (1969)

    Google Scholar 

  • Ratliff, F.: Mach Bands: Quantitative Studies on Neural Networks in the Retina. San Francisco: Holden-Day 1965

    Google Scholar 

  • Robson, J.G., Campbell, F.W.: A threshold contrast function for the visual system. Proc. Symp. Physiological Basis of form discrimination, Lab. of Psychology, Brown University, pp. 44–48 (1964)

  • Rodieck, R.W.: Quantitative analysis of cat retinal ganglion cell response to visual stimuli. Vision Res. 5, 583–601 (1965)

    Google Scholar 

  • Sachs, M.B., Nachmias, J., Robson, J.G.: Spatial-frequency channels in human vision. J. Opt. Soc. Amer. 61, 1176–1186 (1971)

    Google Scholar 

  • Sanderson, K.J., Bishop, P.O. Darian-Smith, I.: The properties of the binocular receptive fields of lateral geniculate neurons. Exp. Brain Res. 13, 178–207 (1971)

    Google Scholar 

  • Schade, O.H., Sr.: Optical and photoelectric analog of the eye. J. Opt. Soc. Amer. 46, 721–739 (1956)

    Google Scholar 

  • Singer, W., Pöppel, E., Creutzfeldt, O.: Inhibitory interaction in the cat's lateral geniculate nucleus. Exp. Brain Res. 14, 210–226 (1972)

    Google Scholar 

  • van der Horst, G.J.C.: Fourier analysis and color discrimination. J. Opt. Soc. Amer. 59, 1670–1676 (1969)

    Google Scholar 

  • Wiesel, T.H.: Receptive fields of ganglion cells in the cat's retina. J. Physiol. (Lond.) 153, 583–594 (1960)

    Google Scholar 

  • Wilson, H.R., Cowan, J.D.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13, 55–80 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Alexander von Humboldt-Stiftung

Rights and permissions

Reprints and permissions

About this article

Cite this article

Legéndy, C.R. Can the data of Campbell and Robson be explained without assuming fourier analysis?. Biol. Cybernetics 17, 157–163 (1975). https://doi.org/10.1007/BF00364164

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00364164

Keywords

Navigation