Skip to main content
Log in

Pacemaker neuron model with plastic firing rate: Entrainment and learning ranges

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The model proposed puts forward a hypothesis on how some pacemaker neurons learn to fire at the frequency imposed by the stimulation. It builds on previous developments in two separate research fields: neural modelling and neuronal learning theory, providing an electrophysiological model of neuronal learning. Simulation results are shown to be in qualitative agreement with experimental data reported for Aplysia and crayfish. The analytical study of the PRC reveals that the postulated learning rule tends to favour the emergence of simple entrainment ratios. The model is worth consideration not only because of its autonomous functioning, described in this paper, but also because it constitutes a suitable building-block for a net aimed at reproducing the temporal-pattern learning phenomena shown by some neural structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ayers, J.L., Selverston, A.I.: Monosynaptic entrainment of an endogenous pacemaker network: a cellular mechanism for von Holt's magnet effect. J. Comp. Physiol. A 129, 5–17 (1979)

    Google Scholar 

  • Beltz, B., Gelperin, A.: Mechanisms of peripheral modulation of salivary burster in Limax maximus: a presumptive sensorimotor neuron. J. Neurophysiol. 44, 675–686 (1980)

    Google Scholar 

  • Bullock, T.H.: In search of principles in neural integration. In: Simpler networks and behavior. Fentress, J.C., ed. Massachusetts: Sinauer Associates 1976

    Google Scholar 

  • Buño, W., Fuentes, J.: Resetting in crayfish stretch receptor. J. Physiol. (submitted for publication, 1985)

  • Bustamante, J., Fuentes, J., Buño, W.: Análisis intracellular de los factores que influyen en la irregularidad de un marcapasos. FESBE 2. Madrid, 1981

  • Calvin, W.H.: Three modes of repetitive firing and the role of threshold time course between spikes. Brain Res 69, 341–346 (1974)

    Google Scholar 

  • Firth, D.R.: Insterspike interval fluctuations in the crayfish stretch receptor organ. Biophys. J. 6, 201–215 (1966)

    Google Scholar 

  • Gillette, R., Gillette, M.V., Davis, W.J.: Action potential broadening and endogenously sustained bursting are substrates of command ability in a feeding neuron of Pleurobranchaea. J. Neurophysiol. 43, 669–685 (1980)

    Google Scholar 

  • Holden, A.V., Ramadan, S.M.: Identification of endogenous and exogenous activity in a molluscan neurone by spike train analysis. Biol. Cybern. 37, 107–114 (1980)

    Google Scholar 

  • Holden, A.V., Ramadan, S.M.: The response of a molluscan neurone to a cyclic input: entrainment and phase-locking. Biol. Cybern. 41, 157–163 (1981a)

    Google Scholar 

  • Holden, A.V., Ramadan, S.M.: Repetitive activity of a molluscan neurone driven by maintained currents: a supercritical bifurcation. Biol. Cybern. 42, 79–85 (1981b)

    Google Scholar 

  • Junge, D., Moore, G.P.: Interspike-interval fluctuations in Aplysia pacemaker neurons. Biophys. J. 6, 411–434 (1966)

    Google Scholar 

  • Kandel, E.R.: Cellular basis of behavior: an introduction to behavioral neurobiology. Oxford: Freeman 1976

    Google Scholar 

  • Kandel, E.R., Spencer, W.A.: Cellular neurophysiological approaches in the study of learning. Physiol. Rev. 48, 65–134 (1968)

    Google Scholar 

  • Knight, B.W.: Dynamics of encoding in a population of neurons. J. Gen. Physiol. 59, 734–766 (1972)

    Google Scholar 

  • Kohn, A.F., Freitas da Rocha, A., Segundo, J.P.: Presynaptic irregularity and pacemaker inhibition. Biol. Cybern. 41, 5–18 (1981)

    Google Scholar 

  • Kristan, W.B.: Plasticity of firing patterns in neurons of Aplysia pleural ganglion. J. Neurophysiol 34, 321–336 (1971)

    Google Scholar 

  • Moore, G.P., Perkel, D.H., Segundo, J.P.: Statistical analysis and functional interpretation of neuronal spike data. Am. Rev. Physiol. 28, 493–522 (1966)

    Google Scholar 

  • Parnas, I., Amstrong, D., Strumwasser, F.: Prolonged excitatory and inhibitory synaptic modulation of a bursting pacemaker neuron. J. Neurophysiol. 7, 594–608 (1974)

    Google Scholar 

  • Pavlidis, T.: Biological oscillators: their mathematical analysis. London: Academic Press 1973

    Google Scholar 

  • Perkel, D.H., Schulman, J.H., Bullock, T.H., Moore, G.P., Segundo, J.P.: Pacemaker neurons: effects of regularly spaced synaptic input. Science 145, 61–63 (1964)

    Google Scholar 

  • Pinsker, H.M.: Aplysia bursting neurons as endogenous oscillators. I. Phase response curves for pulsed inhibitory synaptic input. J. Neurophysiol. 40, 527–543 (1977a)

    Google Scholar 

  • Pinsker, H.M.: Aplysia bursting neurons as endogenous oscillators. II. Synchronization and entrainment by pulsed inhibitory synaptic input. J. Neurophysiol. 40, 544–556 (1977b)

    Google Scholar 

  • Pinsker, H.M., Ayers, J.: Neuronal oscillators. Chap. 9 In: Neurobiology. Willis, W.D., ed. New York: Churchill Livingstone 1983

    Google Scholar 

  • Pinsker, H.M., Kandel, E.R.: Short-term modulation of endogenous bursting rhythms by monosynaptic inhibition in Aplysia neurons: effects of contingent stimulation. Brain Res. 125, 51–64 (1977)

    Google Scholar 

  • Strumwasser, F.: Types of information stored in single neurons. In: Invertebrate nervous systems. Their significance for mammalian neurophysiology. Wiersma, C.A.G., ed. Chicago: University of Chicago Press 1967

    Google Scholar 

  • Sutton, R.S., Barto, A.G.: Toward a modern theory of adaptive networks: expectation and prediction. Psychol. Rev. 88, No. 2, 135–170 (1981)

    Google Scholar 

  • Torras, C.: Neural model for the recognition of temporal patterns of stimulation. Master Thesis, Dept. Computer and Inform. Sci., University of Massachusetts, Amherst 1981

  • Torras, C.: Modelling and simulation of a plastic pacemaker neuron. 2nd. World Conf. on Math. at the Service of Man, 633–640 (1982)

  • Torras, C.: Modelització i simulació de neurones i xarxes neuronals amb capacitat d'aprenentatge de patrons temporals. Doctoral Thesis, Facultat d'Informàtica, Universitat Politècnica de Catalunga 1984

  • Torras, C.: Entrainment in pacemakers characterized by a v-shaped PRC. J. Math. Biol. (submitted for publication, 1985)

  • Tosney, T., Hoyle, G.: Computer-controlled learning in a simple system. Proc. Royal Soc. B 195, 365–393 (1977)

    Google Scholar 

  • Tuckwell, H.C.: Neuronal interspike time histograms for a random input model. Biophys. J. 21, 289–290 (1978)

    Google Scholar 

  • von Baumgarten, R.: Plasticity in the nervous system at the unitary level. In: The neurosciences: second study program, pp. 260–271. Schmitt, F.O., ed. New York: Rockefeller University Press 1970

    Google Scholar 

  • Walloe, L., Jansen, J.K.S., Nygard, K.: A computer simulated program of a second order sensory neuron. Kybernetik 6, 130–140 (1969)

    Google Scholar 

  • Winfree, A.T.: The geometry of biological time. Berlin, Heidelberg, New York: Springer 1980

    Google Scholar 

  • Woolacott, M., Hoyle, G.: Neural events underlying learning in insects: Changes in pacemaker. Proc. R. Soc. London B 195, 599–620 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

i Genís, C.T. Pacemaker neuron model with plastic firing rate: Entrainment and learning ranges. Biol. Cybern. 52, 79–91 (1985). https://doi.org/10.1007/BF00363998

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00363998

Keywords

Navigation