Skip to main content
Log in

Die Nachpotentiale isolierter markhaltiger Nervenfasern des Frosches bei tetanischer Reizung

  • Published:
Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere Aims and scope Submit manuscript

Summary

1. The behaviour of the after-potentials of single Ranvier nodes during repetitive stimulation has been analyzed with special reference to effects that could be interpreted as being due to a transient augmentation or diminuition of the potassium concentration in the perinodal space.

2. The after-depolarizations which are observed at anodal polarized nodes in ordinary or K+-rich Ringer's solution do not add during a train of impulses.

3. The absolute membrane potential at the crest of the after-hyperpolarizations which are found in K+-free Ringer's solution increases progressively during rapid tetanic stimulation and reaches a steady level which depends on the frequency and duration of the tetanus.

4. Rapid repetitive stimulation is followed by a posttetanic hyperpolarization which declines with a half-time of 10–40 msec. The size of the posttetanic hyperpolarization is maximal in K+-free Ringer's solution; it is not reduced by 2,4-dinitrophenol.

5. The amplitude of the posttetanic hyperpolarization increases with increasing frequency and duration of the tetanus, until a maximum is reached. The early phase of the posttetanic hyperpolarization is accompanied by a slight reduction of membrane resistance.

6. It is concluded from the observations under 2)–4) that an appreciable accumulation of released potassium in the perinodal space does not occur and that the posttetanic hyperpolarization of isolated nodes is not due to a transient depletion of potassium from the perinodal space. Unlike the situation in the giant axons of squid and cockroach and in C-fibre-bundles, an effective external barrier to diffusion does not exist at the isolated node.

7. The increase of the absolute membrane potential at the crest of the after-hyperpolarizations during repetitive stimulation and the posttetanic hyperpolarization are supposed to reflect a cumulative increase of the potassium permeability of the membrane which builds up during the tetanus and outlasts its end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Connelly, C. M.: Recovery processes and metabolism of nerve. Rev. mod. Physics 31, 475 (1959).

    Google Scholar 

  • Dettbarn, W. D., u. R. Stämpfli: Die Wirkung von 2,4-Dinitrophenol auf das Membranpotential der markhaltigen Nervenfaser. Helv. physiol. pharmacol. Acta 15, 25 (1957).

    Google Scholar 

  • Dodge, F. A., and B. Frankenhaeuser: Membrane currents in isolated frog nerve fibre under voltage clamp conditions. J. Physiol. (Lond.) 143, 76 (1958).

    Google Scholar 

  • Eccles, J. C.: The physiology of nerve cells. Baltimore: The Johns Hopkins Press 1957.

    Google Scholar 

  • Eccles, J. C., and K. Krnjević: Potential changes recorded inside primary afferent fibres within the spinal cord. J. Physiol. (Lond.) 149, 250 (1959a).

    Google Scholar 

  • Eccles, J. C., and K. Krnjević: Presynaptic changes associated with posttetanic potentiation in the spinal cord. J. Physiol. (Lond.) 149, 274 (1959b).

    Google Scholar 

  • Erlanger, J., and H. S. Gasser: Electrical signs of nervous activity. Philadelphia: University of Pennsylvania Press 1937.

    Google Scholar 

  • Frankenhaeuser, B.: A method for recording resting and action potentials in the isolated myelinated nerve fibre of the frog. J. Physiol. (Lond.) 135, 550 (1957).

    Google Scholar 

  • Frankenhaeuser, B., and A. L. Hodgkin: The after-effects of impulses in the giant nerve fibres of Loligo. J. Physiol. (Lond.) 131, 341 (1956).

    Google Scholar 

  • Frankenhaeuser, B., and B. Waltman: Membrane resistance and conduction velocity of large myelinated nerve fibres from Xenopus laevis. J. Physiol. (Lond.) 148, 677 (1959).

    Google Scholar 

  • Garten, S.: Ein Beitrag zur Kenntnis der positiven Nachschwankung des Nervenstromes nach elektrischer Reizung. Pflügers Arch. ges. Physiol. 136, 545 (1910).

    Google Scholar 

  • Gasser, H. S.: Changes in nerve-potentials produced by rapidly repeated stimuli and their relation to the responsiveness of nerve to stimulation. Amer. J. Physiol. 111, 35 (1935).

    Google Scholar 

  • Gerard, R. W.: Delayed action potentials in nerve. Amer. J. Physiol. 93, 337 (1930).

    Google Scholar 

  • Granit, R.: Reflex rebound by post-tetanic potentiation. Temporal summation — spasticity. J. Physiol. (Lond.) 131, 32 (1956).

    Google Scholar 

  • Greengard, P., and R. W. Straub: After-potentials in mammalian non-myelinated nerve fibres. J. Physiol. (Lond.) 144, 442 (1958).

    Google Scholar 

  • Hering, E.: Beiträge zur allgemeinen Nerven- und Muskelphysiologie. XV. Über positive Nachschwankung des Nervenstromes nach elektrischer Reizung. S. B. Akad. Wiss. Wien, math.-nat. Kl. 89, 137 (1884).

    Google Scholar 

  • Krnjević, K.: Some observations on perfused frog sciatic nerves. J. Physiol. (Lond.) 123, 338 (1954).

    Google Scholar 

  • Lapicque, L.: Sur la théorie de l'addition latente. Ann. Physiol. physicochim. biol. 1, 132 (1925).

    Google Scholar 

  • Lehmann, H.-J.: Die Nervenfaser. In v. Möllendorff-Bargmanns Handbuch der mikroskopischen Anatomie, Bd. IV/4, S.515, 1959.

  • Lloyd, D. P. C.: Post-tetanic potentiation of response in monosynaptic reflex pathways of the spinal cord. J. gen. Physiol. 33, 147 (1949).

    Google Scholar 

  • Lorente de Nó, R.: A study of nerve physiology. Stud. Rockefeller Inst. Med. Res. 131/132 (1947).

  • Meves, H.: Die Nachpotentiale isolierter markhaltiger Nervenfasern des Frosches bei Einzelreizung. Pflügers Arch. ges. Physiol. 271, 655 (1960).

    Google Scholar 

  • Meves, H., u. R. Stämpfli: Die Registrierung der Aktionspotentiale bespülter Ranvierscher Schnürringe mit der Gegenkopplungsmethode. Helv. physiol. pharmacol. Acta 18, C 38 (1960).

    Google Scholar 

  • Narahashi, T., and T. Yamasaki: Mechanism of the after-potential production in the giant axons of the cockroach. J. Physiol. (Lond.) 151, 75 (1960)

    Google Scholar 

  • Ritchie, J. M., and R. W. Straub: The hyperpolarization which follows activity in mammalian non-medullated fibres. J. Physiol. (Lond.) 136, 80 (1957).

    Google Scholar 

  • Robertson, J. D.: The ultrastructure of nodes of Ranvier in frog nerve fibres. J. Physiol. (Lond.) 137, P 8 (1957).

    Google Scholar 

  • Schoepfle, G. M., and F. E. Bloom: Effects of cyanide and dinitrophenol on membrane properties of single nerve fibers. Amer. J. Physiol. 197, 1131 (1959).

    Google Scholar 

  • Schriever, H.: Die Summation nervöser Erregungen. Ergebn. Physiol. 38, 877 (1936).

    Google Scholar 

  • Shanes, A. M.: Electrical phenomena in nerve. I. Squid giant axon. J. gen. Physiol. 33, 57 (1949a).

    Google Scholar 

  • Shanes, A. M.: Electrical phenomena in nerve. II. Crab nerve. J. gen. Physiol. 33, 75 (1949b).

    Google Scholar 

  • Shanes, A. M.: Potassium movement in relation to nerve activity. J. gen. Physiol. 34, 795 (1951).

    Google Scholar 

  • Shanes, A. M.: Electrochemical aspects of physiological and pharmacological action in excitable cells. Pharmacol. Rev. 10, 59 (1958).

    Google Scholar 

  • Shanes, A. M., W. H. Freygang, H. Grundfest and E. Amatniek: Anaesthetic and calcium action in the voltage clamped squid giant axon. J. gen. Physiol. 42, 793 (1959).

    Google Scholar 

  • Taylor, R. E.: Effect of procaine on electrical properties of squid axon membrane. Amer. J. Physiol. 196, 1071 (1959).

    Google Scholar 

  • Verzár, F.: Untersuchungen über die Depolarisationswelle im Nerven. V. Mitteilung. Pflügers Arch. ges. Physiol. 219, 1 (1928).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mit 10 Textabbildungen

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meves, H. Die Nachpotentiale isolierter markhaltiger Nervenfasern des Frosches bei tetanischer Reizung. Pflügers Archiv 272, 336–359 (1961). https://doi.org/10.1007/BF00362698

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00362698

Navigation