Skip to main content
Log in

Temperature dependent torsional properties of high performance fibres and their relevance to compressive strength

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A simple arrangement for the measurement of torsional moduli of high performance fibres as a function of temperature has been reported. Torsional moduli and damping factors have been measured on a number of polymeric [Kevlar, poly(p-phenylene benzobisoxazole) (PBO), poly(p-phenylene benzobisthiazole) (PBZT) and Vectran] and carbon fibres [pitch and PAN based, and one bromine intercalated pitch based carbon fibre] as a function of temperature (room temperature to 150 °C, range) and as a function of vacuum level (1.1–80 ×103 Pa). At these vacuum levels damping in the fine fibres is mainly due to aerodynamic effects. In general PAN based carbon fibres have higher torsional moduli than pitch based carbon fibres. Kelvar 149, PBO and PBZT fibres have comparable room temperature torsional moduli, while the torsional modulus of Vectran fibre is very low, probably due to the torsional flexibility of the -COO- group. In the above temperature range, torsional moduli of both pitch and PAN based carbon fibres do not change significantly, while for polymeric fibres they decrease; a small decrease is observed for PBO and PBZT, and a significantly higher decrease is observed for Vectran. Relationships between compressive strength and torsional moduli have been discussed

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Greenwood and P. G. Rose, J. Mater. Sci. 9 (1974) 1809.

    Article  CAS  Google Scholar 

  2. H. T. Hahn, M. Sohi and S. Moon, “NASA Contractor Report 3988”, June 1986.

  3. V. V. Kozey, V. R. Mehta, H. Jiang and S. Kumar, “Compression Behavior of Materials, Part II — High performance polymeric and carbon fibers”, to be published.

  4. S. J. DeTeresa, Report No. AFWAL-TR-85-4013, Matls. Lab., WPAFB, Ohio.

  5. S. R. Allen, Polymer 29 (1988) 1091.

    Article  CAS  Google Scholar 

  6. W. Sweeny, J. Polym. Sci., Polym. Chem. Ed. 30 (1992) 1111.

    Article  CAS  Google Scholar 

  7. D. J. Plazek, M. N. Vrancken and J. W. Berge, Trans. Soc. Rheol. II (1958) 39.

    Article  Google Scholar 

  8. N. Tokita, J. Polym. Sci. 20 (1956) 515.

    Article  CAS  Google Scholar 

  9. W. H. Gloor, Technical Report AFML-TR-72-65, Part I: Apparatus and Procedures (WPAFB, OH, 1972).

    Google Scholar 

  10. S. Seshadri, PhD Thesis, University of Washington, 1979.

  11. A. J. Perry, B. Ineichen and B. Eliasson, J. Mater. Sci. Lett. 9 (1974) 1376.

    Article  CAS  Google Scholar 

  12. R. A. Adams and D. H. Lloyd, J. Phys. E: Scientific Instr. 8 (1975) 475.

    Article  CAS  Google Scholar 

  13. W. J. Welsh, D. Bhaumik, H. H. Jaff and J. E. Mark,

  14. Idem., Macromol. 14 (1981) 951.

    Article  Google Scholar 

  15. P. J. Flory, “Statistical Mechanics of Chain molecules” (Wiley-Interscience, NY, 1969) p. 133.

    Google Scholar 

  16. H. Tadokoro, “Structure of Crystalline Polymers” (Wiley, NY, 1979) p. 398.

    Google Scholar 

  17. J. Heijboer, Br. Polym. J. 1 (1969) 3.

    Article  CAS  Google Scholar 

  18. Y. Termonia and P. Smith, in “High Modulus Polymers-Approaches to Design and Development” edited by A. E. Zachariades and R. S. Porter (Marcel Dekker, Inc., 1988) p. 353.

  19. M. G. Northolt, Carbon 29 (1991) 1267.

    Article  CAS  Google Scholar 

  20. E. Fitzer, ibid. 27 (1989) 621.

    Article  Google Scholar 

  21. G. A. Lesieutre, A. J. Eckel and J. A. Dicarlo, ibid. 29 (1991) 1025.

    Article  CAS  Google Scholar 

  22. D. A. Jaworske, R. D. Vannucci and J. Zinolabedini, Compos. Mater. 21 (1987) 580.

    Article  CAS  Google Scholar 

  23. S. Kumar and T. E. Helminiak, Mater. Res. Soc. Symp. Proc. 134 (1989) 363.

    Article  CAS  Google Scholar 

  24. S. Kumar, V. R. Mehta, D. P. Anderson and A. S. Crasto, in “Thirty-seventh International SAMPE Symposium” (Covina, CA, 1992) p. 967.

  25. S. Kumar, A. Crasto and D. P. Anderson, J. Mater. Sci. 28 (1993) 423.

    Article  CAS  Google Scholar 

  26. R. E. Wilfong and J. Zimmermann, J. Appl. Polym. Sci. Appl. Polym. Symp. 31 (1977) 1.

    CAS  Google Scholar 

  27. V. V. Kozey and S. Kumar, “Compression Behavior of Materials, Part III- Composites”, to be published.

  28. D. Hull, “An Introduction to Composite Materials” (Cambridge University Press, Cambridge, 1981) p. 161.

    Google Scholar 

  29. V. V. Kozey and S. Kumar, “Compression Behavior of Materials, Part I- Resins”, to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehta, V.R., Kumar, S. Temperature dependent torsional properties of high performance fibres and their relevance to compressive strength. JOURNAL OF MATERIALS SCIENCE 29, 3658–3664 (1994). https://doi.org/10.1007/BF00357332

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00357332

Keywords

Navigation