Skip to main content
Log in

Si-C-N ceramics with a high microstructural stability elaborated from the pyrolysis of new polycarbosilazane precursors

Part I The organic/inorganic transition

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Novel polycarbosilazanes (PCSZs) were prepared by stepwise synthesis and thermal crosslinking of polysilasilazane (PSSZ) copolymers. Their pyrolysis under inert gas, producing Si-C-N ceramics, was investigated up to 1600 °C by analyses performed on the solids (elemental analysis; EPMA; TGA, density; 1H, 13C and 29Si solid state NMR, i.r. XRD, electrical conductivity) and analyses of the evolved gases (gas chromatography and mass spectrometry). From 250 to 450 °C, a first strong weight loss was observed, which was due to the formation and elimination of low-boiling-point oligomers. The weight loss closely depends on the cross-linking degree of the ceramic precursor resulting from the PSSZ/PCSZ conversion. Then, the organic/inorganic transition took place between 500 and 800 °C, proceeding via evolution of gases (mainly H2 and CH4) and yielding a hydrogenated silicon carbonitride. This residue remained stable up to 1250 °C although it progressively lost its residual hydrogen as the temperature was raised. Then, crystallization occurred between 1250 and 1400 °C, yielding β-SiC crystals surrounded by free-carbon cage-like structures. Finally, above 1400 °C, the remaining amorphous Si-C-N matrix underwent a decomposition process accompanied by nitrogen evolution and a second substantial weight loss. At 1600 °C, the pyrolytic residue was a mixture of β-SiC and free carbon. So, the amorphous silicon carbonitride resulting from the pyrolysis of PCSZ precursors was found to be appreciably more thermally stable than the previously reported Si-C-O ceramic obtained by pyrolysis of polycarbosilane precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Saruhan, M. J. Pomeroy and S. Hampshire, in “Non-oxide technical engineering ceramics”, edited by S. Hampshire (Elsevier Applied Science, London and New York, 1986) p. 69.

    Chapter  Google Scholar 

  2. J. Delmonte, in “Technology of carbon and graphite fiber composites”, edited by (Van Nostrand Reinhold, New York, 1981) p. 41.

    Google Scholar 

  3. S. Awasthi and J. L. Wood, Adv. Ceram. Mater. 3/5 (1988) 449.

    Article  Google Scholar 

  4. W. Verbeek, US Patent 3,853.567, December (1974).

  5. P. Popper, Brit. Ceram. Res. Ann. Special Publ. 57 (1967) p. 99.

    Google Scholar 

  6. S. Yajima, J. Amer. Ceram. Soc. 59/7–8 (1976) 324.

    Article  CAS  Google Scholar 

  7. L. Maya, J. Amer. Ceram. Soc. 71/12 (1988) 1104.

    Article  CAS  Google Scholar 

  8. K. B. Schwartz and Y. D. Blum, Mater. Res. Soc. Symp. 73 (1986) 483.

    Google Scholar 

  9. W. S. Rees and D. Senferth, J. Amer. Ceram. Soc. (1988) C 194.

  10. R. W. Rice, Ceram. Bull. 62/8 (1983) 889.

    CAS  Google Scholar 

  11. D. Seyferth, Ann. Chem. Soc. 360 (1988) 124.

    Google Scholar 

  12. K. Okamura, Composites 18/2 (1987) 107.

    Article  CAS  Google Scholar 

  13. R. Naslain, “Introduction to Composite Materials”, Vol. 2, Metallic and Ceramic Matrix Composites (in French), (Editions CNRS/IMC, Bordeaux, 1985).

    Google Scholar 

  14. E. Fitzer, High Temp. Soc. 13 (1980) 149.

    CAS  Google Scholar 

  15. S. Yajima, “Handbook of Composites, “Vol. 1, Strong Fibers edited by W. Watt and B. V. Peron (Elsevier Science, New York, 1985).

    Google Scholar 

  16. K. Okamura, M. Sato, T. Matsuzawa and Y. Hasegawa, ACS Polym. Preprint 25/1 (1984).

  17. J. Lipowitz, H. A. Freeman, R. T. Chen and E. R. Prack, Adv. Ceram. Mater. 2 (1987) 121.

    Article  CAS  Google Scholar 

  18. Y. D. Blum, K. B. Schwartz and R. M. Laine, J. Mater. Sci. 24 (1989) 1707.

    Article  CAS  Google Scholar 

  19. Nee Sun Choong Kwet Yive, R. Corriu, D. Leclerc, P. H. Mutin and A. Vioux, New J. Chem. 15 (1991) 85.

    CAS  Google Scholar 

  20. E. Bouillon, R. Pailler, R. Naslain, J. P. Pillot, M. Birot, E. Bacque and P. V. Huong, Chem. of Mat. 3/2 (1991) 356.

    Article  CAS  Google Scholar 

  21. J. P. Pillot, C. Richard, J. Dunogues, M. Birot, R. Pailler, D. Mocaer, R. Naslain, P. Olry and E. Chassagneux, l'Industrie Céramique 48 (1992) 867.

    Google Scholar 

  22. E. Bacque, J. P. Pillot, J. Dunogues and P. Olry, European Patent 296028 (1988).

  23. E. Bacque, J. Dunogues, C. Biran, P. Olry and J. P. Pillot, French Patent 2589037 (1986).

  24. C. Laffon, P. Lagarde, A. M. Flanck, R. Hagege, P. Olry, J. Cotteret, S. Dixmier, M. Laridjani, A. P. Legrand and B. Humelle, J. Mater. Sci. 24 (1989) 1503.

    Article  CAS  Google Scholar 

  25. C. Gerardin and F. Taulelle, Internal Report (1990).

  26. R. E. Wasylishen and C. A. Fyfe, in “Solid state NMR for chemists” edited by C. A. Fyfe, Annu. Rep. N.M.R. Spectrosc. 12 (1982) 1.

  27. S. Yajima, J. Hayashi, M. Omori and K. Okamura, Nature 261 (1976) 683.

    Article  CAS  Google Scholar 

  28. J. Gaul, European Patent 0075826 (1982).

  29. C. Gerardin, F. Taulelle, C. Richard, J. P. Pillot and J. Dunogues, Unpublished work.

  30. K. Shiina and M. Kumada. J. Org. Chem. 23 (1958) 139.

    Article  CAS  Google Scholar 

  31. Y. Hasegawa, M. Iimura, S. Yajima, J. Mater. Sci. 15 (1980) 720.

    Article  CAS  Google Scholar 

  32. E. Bouillon, D. Mocaer, J. F. Villeneuve, R. Pailler and R. Naslain, “Matériaux Composites pour Applications à Hautes Températures”, edited by R. Naslain, J. Lamalle and J. L. Zulian (AMAC/CODEMAC, Bordeaux 1990).

    Google Scholar 

  33. S. M. Johnson, R. D. Brittain, R. H. Lamoreaux and D. J. Rancliffe, J. Am. Ceram. Soc. 71/3 (1988) C-132.

    Article  Google Scholar 

  34. O. Delverdier, Internal Report (1989).

  35. E. Bouillon, F. Langlais, R. Pailler, R. Naslain, F. Cruege, P. V. Huong, J. C. Sarthou, A. Delpuech, C. Laffon, P. Lagarde, M. Monghioux and A. Oberlin, J. Mater. Sci. 26 (1991) 1333.

    Article  CAS  Google Scholar 

  36. U. Wannagat, Adv. Inorg. Chem. Radiochem. 6 (1964) 225.

    Article  CAS  Google Scholar 

  37. B. J. Aulett, Organomet. Chem. Rev. 3 (1968) 151.

    Google Scholar 

  38. M. Aral Sakurada and T. Isoda, Polym. Prefer. 28 (1987) 407.

    Google Scholar 

  39. Y. Hasegawa and K. Okamura, J. Mater. Sci. 18 (1983) 3633.

    Article  CAS  Google Scholar 

  40. R. Corriu, Internal Report (1989).

  41. F. Carmona, PhD thesis number 509, Bordeaux (1976).

  42. M. Monthioux, A. Oberlin, E. Bouillon, Composite Sci. and Tech. 37 (1990) 21.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mocaer, D., Pailler, R., Naslain, R. et al. Si-C-N ceramics with a high microstructural stability elaborated from the pyrolysis of new polycarbosilazane precursors. JOURNAL OF MATERIALS SCIENCE 28, 2615–2631 (1993). https://doi.org/10.1007/BF00356196

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00356196

Keywords

Navigation