Skip to main content
Log in

Expression of a bacterial aspartase gene in Aspergillus nidulans: an efficient system for selecting multicopy transformants

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

The Escherichia coli aspartase gene aspA has been expressed in the fungus Aspergillus nidulans using the powerful constitutive gpdA promoter and trpC terminator, both from A. nidulans. Multiple, but not single, copies of aspA overcome nutritional deficiencies resulting from the loss of catabolic NAD-linked glutamate dehydrogenase. They also circumvent certain nutritional deficiencies resulting from loss of the positive-acting regulatory gene product mediating nitrogen metabolite repression. Both of these cases of physiological suppression involve the aspartase-catalyzed catabolism of aspartate to ammonium plus fumarate. No physiological evidence for the opposite reaction leading to aspartate synthesis was obtained as multiple copies of aspA did not affect the phenotype resulting from the loss of anabolic NADP-linked glutamate dehydrogenase. The use of vectors containing aspA and recipients lacking NAD-linked glutamate dehydrogenase is an efficient means of selecting multicopy transformants in A. nidulans and also offers the possibility to select strains having increased aspartase levels from original transformants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arst HN Jr (1981) Symp Soc Gen Microbiol 31:131–160

    Google Scholar 

  • Arst HN Jr, Cove DJ (1973) Mol Gen Genet 126:111–141

    Google Scholar 

  • Arst HN Jr, MacDonald DW (1973) Mol Gen Genet 122:261–265

    Google Scholar 

  • Arst HN Jr, Parbtani AAM, Cove DJ (1975) Mol Gen Genet 138:165–171

    Google Scholar 

  • Arst HN Jr, MacDonald DW, Jones SA (1980) J Gen Microbiol 116:285–294

    Google Scholar 

  • Arst HN Jr, Tollervey DW, Sealy-Lewis HM (1982) J Gen Microbiol 128:1083–1093

    Google Scholar 

  • Arst HN Jr, Tollervey D, Caddick MX (1989) Mol Gen Genet 215:364–367

    Google Scholar 

  • Bailey CR, Penfold HA, Arst HN Jr (1979) Mol Gen Genet 169:79–83

    Google Scholar 

  • Berger SL, Kimmel AR (eds) (1987) Methods Enzymol 152:1–812

  • Berse B, Dmochowska A, Skrzypek M, Weglenski P, Bates MA, Weiss RL (1983) Gene 25:109–117

    Google Scholar 

  • Bradford MM (1976) Anal Biochem 72:248–254

    Google Scholar 

  • Clutterbuck AJ (1974) In: King RC (ed) Handbook of genetics, vol. 1. Plenum Press, New York, pp 447–510

    Google Scholar 

  • Clutterbuck AJ (1990) Genetic maps 5:3.97–3.108

    Google Scholar 

  • Cove DJ (1966) Biochim Biophys Acta 113:51–56

    Google Scholar 

  • Davis MA, Cobbett CS, Hynes MJ (1988) Gene 63:199–212

    Google Scholar 

  • Devchand M, Gwynne DI (1991) J Biotechnol 17:3–10

    Google Scholar 

  • Diallinas G, Scazzocchio C (1989) Genetics 122:341–350

    Google Scholar 

  • Durrens P, Green PM, Arst HN Jr, Scazzocchio C (1986) Mol Gen Genet 203:544–549

    Google Scholar 

  • Gorcom RFM van, Punt PJ, Pouwels PH, van den Hondel CAMJJ (1986) Gene 48:211–217

    Google Scholar 

  • Guest JR, Roberts RE, Wilde RJ (1984) J Gen Microbiol 130:1271–1278

    Google Scholar 

  • Hondel CAMJJ van den, Punt PJ, van Gorcom RFM (1991) In: Bennett JW, Lasure LL (eds) More gene manipulations in fungi. Academic Press, San Diego, pp 396–428

    Google Scholar 

  • Hynes MJ, Corrick CM, King JA (1983) Mol Cell Biol 3:1430–1439

    Google Scholar 

  • Hynes MJ, Corrick CM, Kelly JM, Littlejohn TG (1988) Mol Cell Biol 8:2589–2596

    Google Scholar 

  • Kinghorn JR, Pateman JA (1973) J Gen Microbiol 78:39–46

    Google Scholar 

  • Kinghorn JR, Pateman JA (1976) J Bacteriol 125:42–47

    Google Scholar 

  • Kinghorn JR, Pateman JA (1977) In: Smith JE, Pateman JA (eds) Genetics and physiology of Aspergillus. Academic Press, London, pp 147–202

    Google Scholar 

  • Kudla B, Caddick MX, Langdon T, Martinez-Rossi NM, Bennett CF, Sibley S, Davies RW, Arst HN Jr (1990) EMBO J 9:1355–1364

    Google Scholar 

  • Kusnan MB, Klug K, Fock HP (1989) J Gen Microbiol 135:729–738

    Google Scholar 

  • McCully KS, Forbes E (1965) Genet Res 6:352–359

    Google Scholar 

  • Menkel E, Thierbach G, Eggeling L, Sahm H (1989) Appl Environ Microbiol 55:684–688

    Google Scholar 

  • Parsons KA, Chumley FG, Valent B (1987) Proc Natl Acad Sci USA 84:4161–4165

    Google Scholar 

  • Perbal B (1988) A practical guide to molecular cloning, 2nd edn. John Wiley and Sons, New York

    Google Scholar 

  • Pontecorvo G, Roper JA, Hemmons LM, Macdonald KD, Bufton AWJ (1953) Adv Genet 5:141–238

    Google Scholar 

  • Punt PJ, Greaves PA, van den Hondel CAMJJ (1990) Fungal Genet Newslett 37:33

    Google Scholar 

  • Punt PJ, Zegers ND, Busscher M, Pouwels PH, van den Hondel CAMJJ (1991) J Biotechnol 17:19–34

    Google Scholar 

  • Raeder U, Broda P (1985) Lett Appl Microbiol 1:17–20

    Google Scholar 

  • Rand KN, Arst HN Jr (1977) Mol Gen Genet 155:67–75

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Saunders G, Picknett TM, Tuite MF, Ward M (1989) Trends Biotechnol 7:283–287

    Google Scholar 

  • Tilburn J (1988) PhD thesis, University of Essex

  • Tilburn J, Scazzocchio C, Taylor GG, Zabicky-Zissman JH, Lockington RA, Davies RW (1983) Gene 26:205–221

    Google Scholar 

  • Tilburn J, Roussel F, Scazzocchio C (1990) Genetics 126:81–90

    Google Scholar 

  • Upshall A (1986) Curr Genet 10:593–599

    Google Scholar 

  • Wiame J-M, Grenson M, Arst HN Jr (1985) Adv Microb Physiol 26:1–88

    Google Scholar 

  • Williams VR, Lartigue DJ (1969) Methods Enzymol 13:354–361

    Google Scholar 

  • Woods SA, Miles JS, Roberts RE, Guest JR (1986) Biochem J 237:547–557

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. P. Hollenberg

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunter, G.D., Bailey, C.R. & Arst, H.N. Expression of a bacterial aspartase gene in Aspergillus nidulans: an efficient system for selecting multicopy transformants. Curr Genet 22, 377–383 (1992). https://doi.org/10.1007/BF00352439

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352439

Key words

Navigation