Skip to main content
Log in

Self-diffusion in α-Al2O3 and growth rate of alumina scales formed by oxidation: effect of Y2O3 doping

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In many cases, alumina scales are assumed to grow predominantly by oxygen diffusion, but some authors have found that the growth can be controlled by aluminium diffusion. These mechanisms can be modified by active elements. The problem with alumina is that there is a lack of data about self-diffusion coefficients, and, due to the stoichiometry of alumina, diffusion data correspond to an extrinsic diffusion mechanism so that it is not possible to compare oxygen and aluminium diffusion coefficients. In order to obtain information about the alumina scale growth mechanism, oxygen (18O) and aluminium (26Al) self-diffusion coefficients in Al2O3 were determined in the same materials and in the same experimental conditions, thus allowing a direct comparison. For both isotopes, bulk and sub-boundary diffusion coefficients were determined in single crystals of undoped alumina. Grain-boundary diffusion coefficients have been computed only for oxygen diffusion in polycrystals. Oxygen diffusion has been also studied for yttria-doped α-alumina in the lattice, sub-boundaries and grain boundaries. Oxygen and aluminium bulk diffusion coefficients are of the same order of magnitude. In the sub-boundaries, aluminium diffusion is slightly faster than oxygen diffusion. Yttria doping induces a slight increase of the oxygen bulk diffusion, but decreases the grain-boundary diffusion coefficients on account of segregation phenomena. These results are compared with the oxidation constants of alumina former alloys (alloys which develop an alumina scale by oxidation). It appears that neither lattice self-diffusion nor grain boundary self-diffusion can explain the growth rate of alumina scales. Such a situation is compared to the case of Cr2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Huntz, in “The role of Active Elements in the Oxidation Behaviour of High-temperature Metals and Alloys”, edited by E. Lang (Elsevier Applied Science, London and New York, 1989) p. 81.

    Google Scholar 

  2. S. K. Tiku and F. A. Kröger, J.Am. Ceram Soc. 63 (1980) 31.

    Google Scholar 

  3. M. M. El-Aiat and F.A. Kröger, ibid. 65 (1982) 162.

    Google Scholar 

  4. H. A. Wang and F. A. Kröger, ibid. 63 (1980) 613.

    Google Scholar 

  5. F. A. Kröger, Solid State Ionics 12 (1984) 189.

    Google Scholar 

  6. M. Loudjani, B. Lesage, G. Petot-Ervas, D. Dewerdeir and A. M. Huntz, Adv. Ceram. 23 (1987) 125.

    Google Scholar 

  7. B. Lesage, Doctorate Thesis, University of Paris XI (1984).

  8. D. Prot, Thesis, University of Paris VI (1991).

  9. M. K. Loudjani, Doctorate thesis, University of Paris XI (1992).

  10. M. H. Lagrange, A. M. Huntz and L. Y. Laval, Ann. Chim. Fr. 12 (1987) 9.

    Google Scholar 

  11. K. Kitazawa and R. L. Coble, J. Am. Ceram. Soc. 57 (1974) 250.

    Google Scholar 

  12. M. Déchamps and F. Barbier, in “Science of Ceramics Interfaces”, edited by J. Nowotny (Elsevier Science, Amsterdam, 1991) 323.

    Google Scholar 

  13. M. K. Loudjani, A. M. Huntz and R. Cortés, J. Mater. Sci. 28 (1993) 6466.

    Google Scholar 

  14. K. P. R. Reddy, J. L. Smialek and A. R. Cooper, Oxid. Met. 17 (1982) 429.

    Google Scholar 

  15. E. W. A. Young and J. H. W. De Wit, Solid State Ionics 16 (1985) 39.

    Google Scholar 

  16. Idem, Oxid. Met. 26 (1986) 351.

    Google Scholar 

  17. A. E. Paladino and W. D. Kingery, J. Chem Phys. 37 (1962) 957.

    Google Scholar 

  18. Y. Oishi and W. D. Kingery, ibid. 33 (1960) 480.

    Google Scholar 

  19. Y. Oishi, K. Ando and Y. Kubota, ibid. 73 (1980) 1410.

    Google Scholar 

  20. Y. Oishi, K. Ando, N. Suga and W. D. Kingery, J. Am. Ceram. Soc. 66 (1983) C 130.

    Google Scholar 

  21. D. J. Reed and B. J. Wuench, ibid. 63 (1980) 88.

    Google Scholar 

  22. K. P. R. Reddy and R. A. Cooper, ibid. 65 (1982) 634.

    Google Scholar 

  23. K. D. D. Lagerlof, B. J. Pletka, T. E. Mitchell and A. H. Heuer, Rad. Effects 74 (1983) 87.

    Google Scholar 

  24. J. L. Cadoz, Doctorate Thesis, Université Paris XI (1978).

  25. M. Le Gall, B. Lesage and J. Bernardini, Phil. Mag. A (1994)

  26. M. Le Gall, Doctorate thesis, University of Paris XI (1992).

  27. M. Le Gall, B. Lesage, A. M. Huntz and C. Monty, Phil. Mag. A (1994)

  28. A. D. Le Claire and A. Rabinovitch, J. Phys. C, Solid State Phys. 14 (1981) 3863.

    Google Scholar 

  29. B. Lesage, Doctorate thesis, University of Paris XI (1984).

  30. L. Badrour, Doctorate thesis, University of Aix-Marseille III (1986).

  31. D. Prot, M. Miloche and C. Monty, Coll. Physique C1 51 suppl. (1990) 1027.

    Google Scholar 

  32. R. R. Dils, PhD thesis, Stanford University (1965).

  33. G. J. Dienes, D. O. Welch, C. F. Fisher, R. D. Hatcher, D. Lazareth and M. Samberg, Phys. Rev. B11 (1975) 3060.

    Google Scholar 

  34. M. K. Loudjani, A. M. Huntz, R. Cortès, J. Mater. Sci. 28 (1993) 6466.

    Google Scholar 

  35. M. K. Loudjani, Doctorate thesis, University of Paris XI (1992).

  36. C. Wagner, Z. Phys. Chem. B. (1933) 21.

  37. J. Nowok, Oxid. Met. 18 (1982) 1.

    Google Scholar 

  38. F. Clémendot, J. M. Gras and J. C. Van Duysen, in Proceedings of 3rd International Symposium on High Temperature Corrosion and Protection of Materials, Les Embiez, France, May 1992.

  39. P. Choquet, C. Indrigo and R. Mevrel, Mater. Sci. Eng. 88 (1987) 97.

    Google Scholar 

  40. P. Choquet, Doctorate thesis, University of Paris XI (1987).

  41. J. Jedlinski, G. Borchardt and S. Mrowec, Solid State Ionics 50 (1992) 67.

    Google Scholar 

  42. D. N. Chaubet, A. M. Huntz and F. Millot, J. Mater. Sci. 26 (1991) 6119.

    Google Scholar 

  43. A. C. S. Sabioni, A. M. Huntz, J. Philibert, B. Lesage and C. Monty, ibid. 27 (1992) 4782.

    Google Scholar 

  44. A. Atkinson, Mater. Sci. Technol 4 (1988) 1046.

    Google Scholar 

  45. F. Barbier and M. Déchamps, J. Physique, Coll. C5 49 suppl. 10 (1988) 575.

    Google Scholar 

  46. F. Barbier, C. Monty and M. Déchamps, Phil Mag. 58 No. 3 (1988) 475.

    Google Scholar 

  47. A. M. Huntz, G. Moulin and G. Ben Abderrazik, Ann. Chim. Fr. 11 (1986) 291.

    Google Scholar 

  48. M. W. Brumm and H. J. Grabke, Corr. Sci. 33 (1992) 1677.

    Google Scholar 

  49. A. Atkinson, Rev. Mod. Phys. 57 (1985) 437.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Gall, M., Huntz, A.M., Lesage, B. et al. Self-diffusion in α-Al2O3 and growth rate of alumina scales formed by oxidation: effect of Y2O3 doping. JOURNAL OF MATERIALS SCIENCE 30, 201–211 (1995). https://doi.org/10.1007/BF00352151

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352151

Keywords

Navigation