Skip to main content
Log in

Pyrosol deposition of fluorine-doped tin dioxide thin films

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fluorine-doped tin dioxide (SnO2∶F) films were deposited from a tin tetrachloride solution in methanol utilizing a pyrosol deposition process. It is shown from thermodynamic calculations that the atmosphere during deposition is oxygen-rich and also suggested that chlorine and hydrogen chloride, which are produced during the deposition reaction, influence crystal growth. Detailed electrical, optical and structural properties of the material with respect to varying film thickness and substrate temperature are presented and discussed. Resistivity of the films deposited at 450 °C decreased from 6×10−4 to 2×10−4 Ωcm, while the mobility increased from 14 to 45 cm2V−1s−1, respectively, when the film thickness was varied from 100 to 1650 nm. The carrier concentration was relatively unchanged for film thicknesses higher than 200 nm. Optimized SnO2∶F films (∼600 nm) having a resistivity of ∼6×10−4 Ωcm, a carrier mobility of ∼20 cm2V−1s−1, a carrier concentration of ∼8×1020 cm−3 and a transmittance in excess of 80% are quite suitable as electrodes for amorphous silicon solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. L. Chopra, S. Major and D. K. Pandya, Thin Solid Films 102 (1983) 1.

    Google Scholar 

  2. British Patent 632 (1942) 256.

  3. G. Blandenet, M. Court and Y. Lagarde, Thin Solid Films 77 (1981) 81.

    Google Scholar 

  4. H. Ida, T. Mishuku, A. Ito, K. Kato, M. Yamanaka and Y. Hayashi, Sol. Energy Mater. 17 (1988) 407; Trans. IEE Japan 108-A (1988) 543.

    Google Scholar 

  5. K. H. Yoon and J. S. Song, Sol. Energy Mater. and Sol. Cells 28 (1993) 28.

    Google Scholar 

  6. M. Vallet-Regi, V. Ragel, J. Romàn, J. L. Martinez, M. Labeau and J. M. Gonzàlez-Calbet, J. Mater. Res. 8 (1993) 138.

    Google Scholar 

  7. K. Sato, Y. Gotoh, Y. Hayashi, K. Adachi and H. Nishimura, in “Tech. Digest of Int. PVSEC-5”, edited by Y. Hamakawa (Kyoto, Japan, 1990) p. 1032.

  8. R. G. Gordon, J. Proscia, F. B. Ellis, Jr. and A. E. Delahoy, Sol. Energy Mater. 18 (1989) 263.

    Google Scholar 

  9. H. Nishimura, Business Japan 9 (1990) 51.

    Google Scholar 

  10. G. Haacke, Ann. Rev. Mater. Sci. 7 (1977) 73.

    Google Scholar 

  11. J. Dutta, P. Roubeau, T. Emeraud, J. M. Laurent, A. Smith, F. Leblanc and J. Perrin, Thin Solid Films, 239 (1994) 150.

    Google Scholar 

  12. D. W. Koon and C. J. Knickerbocker, Rev. Sci. Instrum. 64 (1993) 510; D. W. Koon, ibid. 60 (1989) 271.

    Google Scholar 

  13. F. Leblanc, Doctoral thesis, Université de Paris-sud, Centre d'Orsay (1992). Also Private communication.

  14. Gmelin. In “Hanbuch der Anorganischen Chemie — Tin Part C5”, (Springer Verlag, New York, 1977) p. 68.

    Google Scholar 

  15. “Handbook of Chemistry and Physics”, 66th Edn, edited by R. C. Weast (CRC Press Inc., Boca Raton, FL, 1986) p. C-351.

    Google Scholar 

  16. Ibid.“ p. B-153.

    Google Scholar 

  17. G. Delluc, B. Pateyron and M. F. Elchinger, in “ADEP, Banque de Données de l'Université et du CNRS”, edited by Direction des Bibliothèques des Musées et de l'Information Scientifique et Technique (F. L. A. Consultants, Paris, 1986–1989).

    Google Scholar 

  18. W. B. White, S. M. Johnson and B. Dantzig, J. Chem Phys. 28 (1958) 751.

    Google Scholar 

  19. R. N. Ghoshtagore, J. Electrochem. Soc. 125 (1975) 110.

    Google Scholar 

  20. M. Vernon, T. R. Hayes and V. M. Donnelly, J. Vac. Sci. Technol. A10 (1992) 3499.

    Google Scholar 

  21. D. W. Readey, in “Ceramic Transaction-Sintering of Advanced Ceramics”, edited by C. A. Handwerker (American Ceramic Society, Cincinatti, OH, USA, 1988) p. 86.

    Google Scholar 

  22. N. Kristensen, F. Ericson, J. A. Schweitz and U. Smith, Thin Solid Films 197 (1991) 67.

    Google Scholar 

  23. R. Rodriguez-Clemente, A. Figueras, S. Garelik, B. Armas and C. Combesare, J. Cryst. Growth 125 (1992) 533.

    Google Scholar 

  24. C. E. Morasanu, in “Thin Film Science and Technology”, Vol. 7, edited by G. Siddall (Elsevier, Amsterdam, 1990) p. 104.

    Google Scholar 

  25. W. M. Sears and M. A. Gee, Thin Solid Films 165 (1988) 265.

    Google Scholar 

  26. H. De Waal and F. Simonis, ibid. 77 (1981) 253.

    Google Scholar 

  27. M. Buchanam, J. B. Webb and D. F. Williams, ibid. 80 (1981) 373.

    Google Scholar 

  28. J. L. Vossen, RCA Rev. 32 (1971) 269.

    Google Scholar 

  29. H. Hoffmann, A. Dietrich, J. Pickl and D. Krause, Appl. Phys. 16 (1978) 381.

    Google Scholar 

  30. K. L. Chopra, in “Thin Film Phenomena”, edited by K. L. Chopra (McGraw-Hill, New York, 1969) p. 138.

    Google Scholar 

  31. J. Dutta, A. L. Unaogu, S. Ray and A. K. Barua, J. Appl. Phys. 66 (1989) 4709.

    Google Scholar 

  32. K. Tanaka and A. Matsuda, Mater. Sci. Rep. 2 (1987) 139.

    Google Scholar 

  33. J. Morris, R. R. Arya, J. G. O'Dowd and S. Wiedeman, J. Appl. Phys. 67 (1990) 1079.

    Google Scholar 

  34. A. Catalano, in “Amorphous and Microcrystalline Devices: Opto-electronic Devices”, edited by Jerzy Kanicki (Artech House, Boston, 1991) p. 9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutta, J., Perrin, J., Emeraud, T. et al. Pyrosol deposition of fluorine-doped tin dioxide thin films. JOURNAL OF MATERIALS SCIENCE 30, 53–62 (1995). https://doi.org/10.1007/BF00352131

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00352131

Keywords

Navigation