Skip to main content
Log in

Helical fissures in compression wood cells: Causative factors and mechanics of development

  • Published:
Wood Science and Technology Aims and scope Submit manuscript

Summary

There is evidence showing that lignification causes both an increase in the thickness of the walls, and changes in the overall width or circumference of wood cells. Although data are not available on changes in length during lignification, it can be deduced that these must also tend to occur. As lignin occupies sites in the cell walls corresponding to those occupied by water, the theory of anisotropic shrinkage of wood may be used to predict the proportional dimensional changes tending to occur as each wall layer in a compression wood cell is lignified. Taking account of the microfibril angles in those layers, it is shown that if the angle for S2 is more than about 45°, inevitably S2 will tend to develop deep helical fissures or splits of the form of those reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexandrov, W. G., Djaparidze, L. I. 1927. Über das Entholzen und Verholzen der Zellhaut. Planta 4: 467–475.

    Google Scholar 

  • Bailey, I. W., Berkley, E. E. 1942. Significance of X-rays in studying the orientation of cellulose in the secondary wall of tracheids. Am. J. Bot. 29 (3): 231–241.

    Google Scholar 

  • Barber, N. F., Meylan, B. A. 1964. The anisotropic shrinkage of wood, a theoretical model. Holzforsch. 18 (5): 146–156.

    Google Scholar 

  • Barber, N. F. 1968. A theoretical model of shirnking wood. Holzforsch. 22 (4): 97–103.

    Google Scholar 

  • Barnard-Brown, E. H., Kingston, R. S. T. 1951. The effect of temperature and grain orientation on the strength properties of wood in tension perpendicular to the grain. Prog. Rep. Div. For. Prod. CSIRO, Aust. No. 8 Sub. Proj. T. P. 10–3/4.

  • Boyd, J. D. 1972. Tree growth stresses. V. Evidence of an origin in differentiation and lignification. Wood Sci. Technol. 6: 251–266.

    Google Scholar 

  • Christensen, G. N., Kelsey, K. K. 1958. The sorption of water vapour by the constituents of wood: Determination of sorption isotherms. Aust. J. Appl. Sci. 9 (3): 265–282.

    Google Scholar 

  • Cruger, H. 1855. Zur Entwicklungsgeschichte der Zellenwand. Bot. Z. 13: 601.

    Google Scholar 

  • Dulmage, W. J., Contois, L. E. 1958. A study of the elastic modulus and extensibility of the crystalline regions in highly oriented polymers. J. Polym. Sci. (28): 275–284.

  • Freudenberg, K. 1964. In Zimmermann, M. H. Ed.: The formation of wood in forest trees. Academic Press, Inc., New York. p. 151.

    Google Scholar 

  • Frey, A. 1926. Submikroskopische Struktur der Zellmembranen. Polarisationsoptische Studie zum Nachweis der Richtigkeit der Mizellartheorie. Jb. Wiss. Bot., 56, Bd. II: 195–223.

    Google Scholar 

  • Goring, D. A. I. 1963. Thermal softening of lignin, hemicellulose and cellulose. Pulp and Paper Res. Inst. Can. Tech. Rept. No. 335.

  • Greenhill, W. L. 1936. Strength tests perpendicular to the grain of timber at various temperatures and moisture contents. J. Coun. Scient. Ind. Res. Aust. 9 (4): 265–278.

    Google Scholar 

  • Grozdits, G. A., Ifju, G. 1969. Development of tensile strength and related properties in differentiating coniferous xylem. Wood Sci. 1 (3): 137–147.

    Google Scholar 

  • Jaccard, P. 1934. Über Versuche zur Bestimmung der Zellsaftkonzentration in der Kambialzone beim exzentrischen Dickenwachstum. II. Jb. Wiss. Bot. 81: 35–58.

    Google Scholar 

  • Jacobs, M. R. 1945. The growth stresses of woody stems. Commonw. For. Bur. Aust. Bull. No. 28.

  • Kollmann, F. F., Côté, W. A. 1968. Principles of wood science and technology. Vol. 1. Springer-Verlag. Berlin-Heidelberg-New York.

    Google Scholar 

  • Lämmermayr, L. 1901. Beiträge zur Kenntnis der Heterotrophie von Holz und Rinde. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften. Mathematisch-Naturwissenschaftliche Klasse, Wien, Pt. 1, 110: 29–62.

    Google Scholar 

  • Mark, R. 1965. Tensile stress analysis of the cell walls of coniferous tracheids. In Côté, W. A. Ed.: Cellular ultrastructure of woody plants. Syracuse Univ. Press, Syracuse. 493–533.

    Google Scholar 

  • Mark, R. E., Gillis, P. P. 1970. New models in cell-wall mechanics. Wood Fiber 2 (2): 79–95.

    Google Scholar 

  • Münch E. 1938. Statik und Dynamik des schraubigen Baues der Zellwand, besonders des Druck- und Zugholzes. Flora, Jena, 32: 357–424.

    Google Scholar 

  • Nakato, K. 1958. On the cause of the anisotropic shrinkage and swelling of wood. IX. On the relationships between the microscopic structure and the anisotropic shrinkage in transverse section (2). Japan Wood Res. Soc. 3–4: 134–141.

    Google Scholar 

  • Onaka, F. 1949. Studies on compression and tension wood. Wood Res., Kyoto, Bull. No. 1.

  • Preston, R. D. 1942. Anisotropic contraction of wood and its constituent cells. Forestry 16: 32–48.

    Google Scholar 

  • Preston, R. D., Middlebrook, M. 1949. The fine structure of sisal fibres. J. Text. Inst. 40: 715–722.

    Google Scholar 

  • Sakurada, I., Nukushina, Y., Ito, T. 1962. Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J. Polymer Sci. (57): 651–660.

  • Scurfield, G., Wardrop, A. B. 1962. The nature of reaction wood. VI. The reaction anatomy of seedlings of woody perennials. Aust. J. Bot. 10 (2): 93–105.

    Google Scholar 

  • Sonntag, P. 1909. Die duktilen Pflanzenfasern, der Bau ihrer mechanischen Zellen und die etwaigen Ursachen der Duktilität. Flora, Jena, 99: 203–259.

    Google Scholar 

  • Srinivasan, P. S. 1941. The elastic and thermal properties of timber. Quart. J. Indian. Inst. Sci. 4: 222–314.

    Google Scholar 

  • Stamm, A. J., Smith, W. E. 1969. Laminar sorption and swelling theory for wood and cellulose. Wood Sci. Technol. 3 (4): 301–323.

    Google Scholar 

  • Wardrop, A. B. 1957. The organization and properties of the outer layer of the secondary wall in conifer tracheids. Holzforsch. 11 (4): 102–110.

    Google Scholar 

  • Wardrop, A. B. 1964. The structure and formation of the cell wall in xylem. In Zimmerman, M. H. Ed.: The formation of wood in forest trees. Academic Press, Inc., New York.

    Google Scholar 

  • Wardrop, A. B. 1965. The formation and function of reaction wood. In Côté, W. A. Ed.: Cellular ultrastructure of woody plants. Syracuse Univ. Press, Syracuse: 371–390.

    Google Scholar 

  • Wardrop, A. B. 1971. Lignins, occurrence and formation in plants. In Sarkanen, K. V., Ludwig, C. L. Ed.: Lignans. John Wiley & Sons, Inc.: 19–41.

  • Wardrop, A. B., Dadswell, H. E. 1950. The nature of reaction wood. II. The cell wall organization of compression wood tracheids. Aust. J. Scient. Res. B 3: 1–13.

    Google Scholar 

  • Wardrop, A. B., Dadswell, H. E. 1952. The nature of reaction wood. III. Cell division and cell wall formation in conifer stems. Aust. J. Scient. Res. B 5 (4): 385–398.

    Google Scholar 

  • Wardrop, A. B., Dadswell, H. E. 1953. The development of the conifer tracheid. Holzforsch. 7 (2/3): 33–39.

    Google Scholar 

  • Wardrop, A. B., Davies, G. W. 1964. The nature of reaction wood. VIII. The structure and differentiation of compression wood. Aust. J. Bot. 12 (1): 24–38.

    Google Scholar 

  • Westing, A. H. 1965. The formation and function of compression wood in gymnosperms. Bot. Rev. 31: 381–480.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyd, J.D. Helical fissures in compression wood cells: Causative factors and mechanics of development. Wood Science and Technology 7, 92–111 (1973). https://doi.org/10.1007/BF00351153

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351153

Keywords

Navigation