Skip to main content

Physical and Mechanical Properties of Reaction Wood

  • Chapter
  • First Online:
The Biology of Reaction Wood

Part of the book series: Springer Series in Wood Science ((SSWOO))

Abstract

Reaction wood produces very peculiar maturation stresses at the tree periphery, i.e. compressive stress or very high tensile stress, for compression and tension wood, respectively, as compared to moderately high tensile stress for normal wood. This means that both its mechanical state and its mechanical and physical properties differ from normal wood.

Compression wood shows big differences from normal wood in conifers, for all physical and mechanical properties: higher density and axial crushing strength (MOR) but lower modulus of elasticity (MOE), far higher axial (longitudinal) shrinkage but lower radial and tangential shrinkage, sometimes even lower than the axial shrinkage.

For tension wood things are less simple and can vary a lot from hardwood species to species. Globally there are no systematic differences in density and transverse shrinkage; MOE tends to be a little higher while MOR is slightly lower. However, axial shrinkage is much higher for tension wood with a gelatinous layer (G layer) than normal wood due to the specific gel-like organization of matrix in the G layer. For tension wood without a G layer (which is rather frequent) axial shrinkage is around two times higher than in normal wood. This paradoxical shrinkage is thought to originate from the release of maturation stresses during drying.

Overall the very high tensile stress and stored elastic energy in tension wood lead to problems in wood processing (end splitting and board warping), which is far less the case for compression wood. But due to the large difference in properties relative to normal wood, compression wood occurrence is always a big problem for the in service behaviour of timber, which is seldom the case for tension wood.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Density is defined as the ratio between the mass of a material and its volume. For wood, it has been traditional to use what is called basic density, which is the ratio between oven-dry mass and saturated volume. The latter measurement is chosen because it is easy to determine in practice, since volume measurement is generally made by immersing the wood in water and applying Archimedes’ principle. The comparison in density between normal wood and reaction wood is, however, little affected by the definition used.

References

  • Abe K, Yamamoto H (2005) Mechanical interaction between cellulose microfibril and matrix substance in wood cell wall determined by X-ray diffraction. J Wood Sci 51:334–338

    Article  CAS  Google Scholar 

  • Abe K, Yamamoto H (2007) The influences of boiling and drying treatments on the behaviors of tension wood with gelatinous layers in Zelkova serrata. Int J Wood Sci 53:5–10

    Article  Google Scholar 

  • Akins V, Pillow MY (1950) Occurrence of gelatinous fibres and their effect upon properties of hardwood species. Proc US For Prod Res Soc 4:254–264

    Google Scholar 

  • Alméras T, Thibaut A, Gril J (2005) Effect of circumferential heterogeneity of wood maturation strain, modulus of elasticity and radial growth on the regulation of stem orientation in trees. Trees Struct Funct 19:457–467

    Article  Google Scholar 

  • Arganbright DG, Bensend DW, Manwiller FG (1970) Influence of gelatinous fibers on the shrinkage of silver maple. Wood Sci 3:83–89

    Google Scholar 

  • Astley RJ, Stol KA, Harrington JJ (1998) Modelling the elastic properties of softwood. II. The cellular microstructure. Holz Roh Werkst 56:43–50

    Article  Google Scholar 

  • Baba K, Park Y, Kaku T, Kaida R, Takeuchi M, Yoshida M, Hosoo Y, Ojio Y, Okuyama T, Taniguchi T, Ohmiya Y, Kondo T, Shani Z, Shoseyov O, Awano T, Serada S, Norioka N, Norioka S, Hayashi T (2009) Xyloglucan for generating tensile stress to bend tree stem. Mol Plant 2:893

    Article  CAS  PubMed  Google Scholar 

  • Baillères H (1994) Précontraintes de croissance et propriétés mécano-physiques de clones d’Eucalyptus (Pointe Noire-Congo): hétérogénéités, corrélations et interprétations histologiques. Thesis. Université de Bordeaux 1 s.n. Bordeaux, 162 pp

    Google Scholar 

  • Barber NF (1968) A theoretical model of shrinking wood. Holzforschung 22:97–103

    Article  Google Scholar 

  • Barber NF, Meylan BA (1964) The anisotropic shrinkage of wood. Holzforschung 18:146–156

    Article  Google Scholar 

  • Barrett JD, Schniewind AP, Taylor RL (1972) Theoretical shrinkage model for wood cell wall. Wood Sci 4:178–192

    CAS  Google Scholar 

  • Bowling AJ, Vaughn KC (2008) Immunocytochemical characterization of tension wood: gelatinous fibers contain more than just cellulose. Am J Bot 95:655–663

    Article  PubMed  Google Scholar 

  • Boyd JD (1977) Relationship between fibre morphology and shrinkage of wood. Wood Sci Technol 11:3–22

    Article  Google Scholar 

  • Boyd JD (1980) Relationships between fibre morphology, growth strains and physical properties of wood. Aust For Res 10:337–360

    Google Scholar 

  • Brémaud I, Ruelle J, Thibaut A, Thibaut B (2013) Changes in vibrational properties between compression and normal wood: roles of microfibril angle and of lignin. Holzforschung 67:75–85

    Article  Google Scholar 

  • Burgert I, Jungnikl K (2004) Adaptive growth of gymnosperm branches—ultrastructural and micromechanical examinations. J Plant Growth Regul 23:76–82

    Article  CAS  Google Scholar 

  • Burgert I, Keckes J, Frühmann K, Fratzl P, Tschegg SE (2002) A comparison of two techniques for wood fibre isolation—evaluation by tensile tests on single fibres with different microfibril angle. Plant Biol 4:9–12

    Article  CAS  Google Scholar 

  • Burgert I, Fuhmann K, Keckes J, Fratzl P, Stanzl-Tschegg SE (2003) Microtensile testing of wood fibers combined with video extensometry for efficient strain detection. Holzforschung 57:661–664

    Article  CAS  Google Scholar 

  • Burgert I, Frühmann K, Keckes J, Fratzl P, Stanzl-Tschegg S (2004) Structure-function relationships of four compression wood types: micromechanical properties at the tissue and fibre level. Trees 18:480–485

    Article  CAS  Google Scholar 

  • Burgert I, Frühmann K, Keckes J, Fratzl P, Stanzl-Tschegg S (2005a) Properties of chemically and mechanically isolated fibres of spruce (Picea abies [L.] Karst.). Part 2: twisting phenomena. Holzforschung 59:247–251

    CAS  Google Scholar 

  • Burgert I, Gierlinger N, Zimmermann T (2005b) Properties of chemically and mechanically isolated fibres of spruce (Picea abies [L.] Karst.). Part 1: structural and chemical characterisation. Holzforschung 59:240–246

    CAS  Google Scholar 

  • Cave ID (1969) The longitudinal Young’s modulus of Pinus radiata. Wood Sci Technol 3:40–48

    Article  Google Scholar 

  • Cave ID (1972a) A theory of the shrinkage of wood. Wood Sci Technol 6:284–292

    Article  Google Scholar 

  • Cave ID (1972b) Swelling of a fibre reinforced composite in which the matrix is water reactive. Wood Sci Technol 6:157–161

    Article  Google Scholar 

  • Chafe SC (1990) Relationships among growth strain, density and strength properties in two species of Eucalyptus. Holzforschung 44:431–437

    Article  Google Scholar 

  • Chang SS, Clair B, Ruelle J, Beauchêne J, Di Renzo F, Quignard F, Zhao GJ, Yamamoto H, Gril J (2009a) Mesoporosity as a new parameter for understanding tension stress generation in trees. J Exp Bot 60:3023–3030

    Article  CAS  PubMed  Google Scholar 

  • Chang SS, Clair B, Gril J, Yamamoto H, Quignard F (2009b) Deformation induced by ethanol substitution in normal and tension wood of chestnut (Castanea sativa Mill.) and simarouba (Simarouba amara Aubl.). Wood Sci Technol 43:703–712

    Article  CAS  Google Scholar 

  • Chang SS, Quignard F, Di Renzo F, Clair B (2012) Solvent polarity and internal stresses control the swelling behavior of green wood during dehydration in organic solution. Bioresources 7:2418–2430

    Google Scholar 

  • Chow KY (1946) A comparative study of the structure and chemical composition of tension wood and normal wood in beech (Fagus sylvatica L.). Forestry 20:62–78

    Article  Google Scholar 

  • Clair B (2001) Etude des propriétés mécaniques et du retrait au séchage du bois à l’échelle de la paroi cellulaire: essai de compréhension du comportement macroscopique paradoxal du bois de tension à couche gélatineuse. Thesis, Wood science ENGREF, Montpellier, 152 pp

    Google Scholar 

  • Clair B (2012) Evidence that release of internal stress contributes to drying strains of wood. Holzforschung 66:349–353

    Article  CAS  Google Scholar 

  • Clair B, Thibaut B (2001) Shrinkage of the gelatinous layer of poplar and beech tension wood. IAWA J 22:121–131

    Article  Google Scholar 

  • Clair B, Arinero R, Lévêque G, Ramonda M, Thibaut B (2003a) Imaging the mechanical properties of wood cell wall layers by atomic force modulation microscopy. IAWA J 24:223–230

    Google Scholar 

  • Clair B, Jaouen G, Beauchêne J, Fournier M (2003b) Mapping radial, tangential and longitudinal shrinkages and relation to tension wood in discs of the tropical tree Symphonia globulifera. Holzforschung 57:665–671

    CAS  Google Scholar 

  • Clair B, Ruelle J, Thibaut B (2003c) Relationship between growth stress, mechano-physical properties and proportion of fibre with gelatinous layer in chestnut (Castanea sativa Mill.). Holzforschung 57:189–195

    CAS  Google Scholar 

  • Clair B, Gril J, Baba K, Sugiyama J (2004) Revealing growth stresses at the cell-wall level in poplar tension wood. In: Morlier P, Morais J, Dourado N (eds) Third international conference of the European society for wood mechanics. UTAD, Vila Real, pp 175–181

    Google Scholar 

  • Clair B, Thibaut B, Sugiyama J (2005a) On the detachment of gelatinous layer in tension wood fiber. J Wood Sci 51:218–221

    Article  CAS  Google Scholar 

  • Clair B, Gril J, Baba K, Thibaut B, Sugiyama J (2005b) Precautions for the structural analysis of the gelatinous layer in tension wood. IAWA J 26:189–195

    Article  Google Scholar 

  • Clair B, Alméras T, Yamamoto H, Okuyama T, Sugiyama J (2006a) Mechanical behavior of cellulose microfibrils in tension wood, in relation with maturation stress generation. Biophys J 91:1128–1135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clair B, Ruelle J, Beauchêne J, Prévost M-F, Fournier Djimbi M (2006b) Tension wood and opposite wood in 21 tropical rain forest species. 1. Occurrence and efficiency of the G-layer. IAWA J 27:329–338

    Google Scholar 

  • Clair B, Gril J, Di Renzo F, Yamamoto H, Quignard F (2008) Characterization of a gel in the cell wall to elucidate the paradoxical shrinkage of tension wood. Biomacromolecules 9:494–498

    Article  CAS  PubMed  Google Scholar 

  • Clarke SH (1937) The distribution, structure and properties of tension wood in beech (Fagus silvatica L.). Forestry 11:85–91

    Google Scholar 

  • Coutand C, Jeronimidis G, Chanson B, Loup C (2004) Comparison of mechanical properties of tension and opposite wood in Populus. Wood Sci Technol 38:11–24

    Article  CAS  Google Scholar 

  • Dadswell HE, Wardrop AB (1955) The structure and properties of tension wood. Holzforschung 9:97–104

    Article  CAS  Google Scholar 

  • Dinh AT, Pilate G, Assor C, Perré P (2008) Measurement of the elastic properties of minute samples of wood along the three material directions. COST Action IE0601/ESWM, Braga, 6 pp

    Google Scholar 

  • Fang C-H, Clair B, Gril J, Alméras T (2007) Transverse shrinkage in G-fibers as a function of cell wall layering and growth strain. Wood Sci Technol 41:659–671

    Article  CAS  Google Scholar 

  • Fang C-H, Guibal D, Clair B, Gril J, Lu Y-M, Liu S-Q (2008a) Relationships between growth stress and wood properties in poplar I-69 (Populus deltoides Bartr. cv. “Lux” ex I-69/55). Ann Forest Sci 65:307 (9 pp)

    Google Scholar 

  • Fang C-H, Clair B, Gril J, Liu S-Q (2008b) Growth stresses are highly controlled by the amount of G-layer in poplar tension wood. IAWA J 29:237–246

    Article  Google Scholar 

  • Fisher JB, Stevenson JW (1981) Occurrence of reaction wood in branches of dicotyledons and its role in tree architecture. Bot Gazette 142:82–95

    Article  Google Scholar 

  • Gindl W (2002) Comparing mechanical properties of normal and compression wood in Norway spruce: the role of lignin in compression parallel to the grain. Holzforschung 56:395–401

    CAS  Google Scholar 

  • Gindl W, Teischinger A (2003) Comparison of the TL-shear strength of normal and compression wood of European larch. Holzforschung 57:421–426

    Article  CAS  Google Scholar 

  • Gindl W, Teischinger A, Schwanninger M, Hinterstoisser B (2001) The relationship between near infrared spectra of radial wood surfaces and wood mechanical properties. J Near Infrared Spectrosc 9:255–261

    Article  CAS  Google Scholar 

  • Gindl W, Gupta HS, Schöberl T, Lichtenegger HC, Fratzl P (2004) Mechanical properties of spruce wood cell walls by nanoindentation. Appl Phys A Mater Sci Process 79:2069–2073

    Article  CAS  Google Scholar 

  • Gril J, Berrada E, Thibaut B (1993) Recouvrance hygrothermique du bois vert. Il. Variations dans le plan transverse chez le châtaignier et l’épicéa et modélisation de la fissuration à coeur provoquée par l’étuvage. Ann Sci For 50:487–508

    Article  Google Scholar 

  • Gril J, Sassus F, Yamamoto H, Guitard D (1999) Maturation and drying strain of wood in longitudinal direction: a single-fibre mechanical model. In: Nepveu G (ed) 3rd workshop on connection between silviculture and wood quality through modelling approaches and simulation softwares (IUFRO WP S5.01.04 “Biological Improvement of Wood Properties”). ERQB-INRA Nancy, La Londe-Les-Maures, 309–313

    Google Scholar 

  • Grzeskowiak V, Sassus F, Fournier M (1996) Coloration macroscopique, retraits longitudinaux de maturation et de séchage du bois de tension du peuplier (Populus x euramericana cv l.214). Ann Sci For 53:1083–1097

    Article  Google Scholar 

  • Harrington JJ, Booker RE, Astley RJ (1998) Modelling the elastic properties of softwood. Part I: the cell-wall lamellae. Holz Roh Werkst 56:37–41

    Google Scholar 

  • Hayashi T, Kaida R (2010) Functions of xyloglucan in plant cells. Mol Plant 4:17–24. doi:10.1093/mp/ssq063

    Article  PubMed  Google Scholar 

  • Ikushima T, Soga K, Hoson T, Shimmen T (2008) Role of xyloglucan in gravitropic bending of azuki bean epicotyl. Physiol Plant 132:552–565

    Article  CAS  PubMed  Google Scholar 

  • Jourez B, Riboux A, Leclercq A (2001a) Comparison of basic density and longitudinal shrinkage in tension wood and opposite wood in young stems of Populus euramericana cv. Ghoy when subjected to a gravitational stimulus. Can J For Res 31:1676–1683

    Google Scholar 

  • Jourez B, Riboux A, Leclercq A (2001b) Anatomical characteristics of tension wood and opposite wood in young inclined stems of poplar (Populus euramericana CV “Ghoy”). IAWA J 22:133–157

    Article  Google Scholar 

  • Jullien D, Gril J (2003) Modelling crack propagation due to growth stress release in round wood. J Phys IV 105:265–272

    Google Scholar 

  • Kaku T, Serada S, Baba K, Tanaka F, Hayashi T (2009) Proteomic analysis of the G-layer in poplar tension wood. J Wood Sci 55:250–257

    Article  CAS  Google Scholar 

  • Konnerth J, Gindl W (2006) Mechanical characterisation of wood-adhesive interphase cell walls by nanoindentation. Holzforschung 60:429–433

    Article  CAS  Google Scholar 

  • Koponen S, Toratti T, Kanerva P (1989) Modelling longitudinal elastic and shrinkage properties of wood. Wood Sci Technol 23:55–63

    Article  Google Scholar 

  • Koponen S, Toratti T, Kanerva P (1991) Modelling elastic and shrinkage properties of wood based on cell structure. Wood Sci Technol 25:25–32

    Article  Google Scholar 

  • Kroll RE, Ritter DC, Au KC (1992) Anatomical and physical properties of balsam poplar (Populus balsamifera L.) in Minnesota. Wood Fiber Sci 24:13–24

    Google Scholar 

  • Kubler H (1987) Growth stresses in trees and related wood properties. For Prod Abstr 10:62–119

    Google Scholar 

  • Lafarguette F, Leplé J-C, Déjardin A, Laurans F, Costa G, Lesage-Descauses M-C (2004) Poplar genes encoding fasciclin-like arabinogalactan proteins are highly expressed in tension wood. New Phytol 164:107–121

    Article  CAS  Google Scholar 

  • Lowell EC, Krahmer RL (1993) Effects of lean in red alder trees on wood shrinkage and density. Wood Fiber Sci 25:2–7

    Google Scholar 

  • Mark RE (1973) The relationship between fiber modulus and S2 angle. Tappi 56:164–167

    CAS  Google Scholar 

  • McLean JP, Arnould O, Beauchêne J, Clair B (2012) The effect of the G-layer on the viscoelastic properties of tropical hardwoods. Ann For Sci 69:399–408

    Article  Google Scholar 

  • Mellerowicz EJ, Immerzeel P, Hayashi T (2008) Xyloglucan: the molecular muscle of trees. Ann Bot 102:659–665

    Article  CAS  PubMed  Google Scholar 

  • Metzger K (1908) Über das Konstruktionsprinzip des sekundären Holzkörpers. Naturwiss Zeitschr Forst Landwirtschaft 6:249–273

    Google Scholar 

  • Nishikubo N, Awano T, Banasiak A, Bourquin V, Ibatullin F, Funada R, Brumer H, Teeri TT, Hayashi T, Sundberg B, Mellerowicz EJ (2007) Xyloglucan endo-transglycosylase (XET) functions in gelatinous layers of tension wood fibers in poplar—a glimpse into the mechanism of the balancing act of trees. Plant Cell Physiol 48:843–855

    Article  CAS  PubMed  Google Scholar 

  • Norberg H, Meier H (1966) Physical and chemical properties of the gelatinous layer in tension wood fibres of aspen (Populus tremula L.). Holzforschung 20:174–178

    Article  CAS  Google Scholar 

  • Onaka F (1949) Studies on compression and tension wood. Wood Res Bull Wood Res Inst Kyoto Univ 1:1–88

    Google Scholar 

  • Ono T, Norimoto M (1983) Study on Young’s modulus and internal friction of wood in relation to the evaluation of wood for musical instruments. Jpn J Appl Phys 22:611–614

    Article  Google Scholar 

  • Passard J, Perré P (2005) Viscoelastic behaviour of green wood across the grain. Part II. A temperature dependent constitutive model defined by inverse method. Ann For Sci 62:823–830

    Article  Google Scholar 

  • Pillow MY (1956) Presence of tension wood in mahogany in relation to longitudinal shrinkage. Report US Forest Product Laboratory n°D1763

    Google Scholar 

  • Placet V, Passard J, Perré P (2007) Viscoelastic properties of green wood across the grain measured by harmonic tests in the range 0–95°C: hardwood vs. softwood and normal wood vs. reaction wood. Holzforschung 61:548–557

    Article  CAS  Google Scholar 

  • Potter MC (1924) On the occurrence of cellulose in the xylem of woody stems. Ann Bot 18:121–140

    Google Scholar 

  • Reiterer A, Lichtenegger H, Tschegg S, Fratzl P (1999) Experimental evidence for a mechanical function of the cellulose microfibril angle in wood cell wall. Philos Mag A 79:2173–2184

    Article  CAS  Google Scholar 

  • Ruelle J, Clair B, Beauchêne J, Prévost M-F, Fournier M (2006) Tension wood and opposite wood in 21 tropical rain forest species. 2. Comparison of some anatomical and ultrastructural criteria. IAWA J 27:341–376

    Article  Google Scholar 

  • Ruelle J, Beauchêne J, Thibaut A, Thibaut B (2007a) Comparison of physical and mechanical properties of tension and opposite wood from ten tropical rainforest trees from different species. Ann For Sci 64:503–510

    Article  Google Scholar 

  • Ruelle J, Yamamoto H, Thibaut B (2007b) Growth stresses and cellulose structural parameters in tension and normal wood from three tropical rainforest angiosperm species. Bioresources 2:235–251

    CAS  Google Scholar 

  • Ruelle J, Beauchêne J, Yamamoto H, Thibaut B (2011) Variations in physical and mechanical properties between tension and opposite wood from three tropical rainforest species. Wood Sci Technol 45:339–357

    Article  CAS  Google Scholar 

  • Sachsse H (1965) Untersuchungen über den Einfluss der Ästung auf die Farbkern- und Zugholzausbildung einiger Pappelsorten. Holz Roh Werkst 23:425–434

    Article  Google Scholar 

  • Salmén L (2004) Micromechanical understanding of the cell-wall structure. Comp Rend Biol 327:873–880

    Article  Google Scholar 

  • Salmén L, de Ruvo A (1985) A model for the prediction of fiber elasticity. Wood Fiber Sci 17:336–350

    Google Scholar 

  • Salmén L, Burgert I (2009) Cell wall features with regard to mechanical performance. A review selected articles from the COST action E35: wood machining micromechanics and fracture. Holzforschung 63:121–129

    Article  Google Scholar 

  • Sanio C (1860a) Einige Bemerkungen über den Bau des Holzes - I. Ueber den Bau des Tÿpfels und Hofes. Botanische Zeitung 18:193–200

    Google Scholar 

  • Sanio C (1860b) Einige Bemerkungen über den Bau des Holzes - II. Ueber dee tertiäre verdickungsschicht der holzzellen. Botanische Zeitung 18:201–204

    Google Scholar 

  • Sanio C (1863) Vergleichende Untersuchungen über die elementarorgane des Holzkörpers. II. Bastfaserähnliches system. Botanische Zeitung 21:101–111

    Google Scholar 

  • Terrell B (1953) Distribution of tension wood and its relation to longitudinal shrinkage in aspen. Plant Foods for Human Nutrition (Formerly Qualitas Plantarum)

    Google Scholar 

  • Timell TE (1986) Compression wood in gymnosperms. 1. Bibliography, historical background, determination, structure, chemistry, topochemistry, physical properties, origin, and formation of compression wood. Springer, Berlin, p 2150

    Google Scholar 

  • Wardrop AB, Dadswell HE (1948) The nature of reaction wood. I. The structure and properties of tension wood fibres. Aust J Sci Res Ser B Biol Sci 1:3–16

    Google Scholar 

  • Wardrop AB, Dadswell HE (1955) The nature of reaction wood. IV. Variations in cell wall organization of tension wood fibres. Aust J Bot 3:177–189

    Article  Google Scholar 

  • Washusen R, Evans R (2001) Prediction of wood tangential shrinkage from cellulose crystallite width and density in one 11-year-old tree of Eucalyptus globulus Labill. Aust For 64:123–126

    Article  Google Scholar 

  • Washusen R, Ilic J (2001) Relationship between transverse shrinkage and tension wood from three provenances of Eucalyptus globulus Labill. Holz Roh Werkst 59:85–93

    Article  Google Scholar 

  • Washusen R, Ades P, Evans R, Ilic J, Vinden P (2001) Relationships between density, shrinkage, extractives content and microfibril angle in tension wood from three provenancesof 10-year-old Eucalyptus globulus Labill. Holzforschung 55:176–182

    Article  CAS  Google Scholar 

  • Yamamoto H (1999) A model of anisotropic swelling and shrinking process of wood. Part 1. Generalization of Barber’s wood fiber model. Wood Sci Technol 33:311–325

    Article  CAS  Google Scholar 

  • Yamamoto H, Abe K, Arakawa Y, Okuyama T, Gril J (2005) Role of the gelatinous layer (G-layer) on the origin of the physical properties of the tension wood of Acer sieboldianum. J Wood Sci 51:222–233

    Article  CAS  Google Scholar 

  • Yamamoto H, Ruelle J, Arakawa Y, Yoshida M, Clair B, Gril J (2009) Origin of the characteristic hygro-mechanical properties of the gelatinous layer in tension wood from kunugi oak (Quercus acutissima). Wood Sci Technol 44:149–163. doi:10.1007/s00226-009-0262-5

    Article  Google Scholar 

  • Yang JL, Evans R (2003) Prediction of MOE of eucalypt wood from microfibril angle and density. Holz Roh Werkst 61:449–452

    Article  Google Scholar 

  • Yang JL, Ilic J (2003) A new method of determining growth stress and relationships between associated wood properties of Eucalyptus globulus Labill. Aust For 66:153–157

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Clair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Clair, B., Thibaut, B. (2014). Physical and Mechanical Properties of Reaction Wood. In: Gardiner, B., Barnett, J., Saranpää, P., Gril, J. (eds) The Biology of Reaction Wood. Springer Series in Wood Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10814-3_6

Download citation

Publish with us

Policies and ethics