Skip to main content
Log in

Simulations of nonlinear fracture process zone in cementitious material—a boundary element approach

  • Published:
Computational Mechanics Aims and scope Submit manuscript

Abstract

A boundary element method based numerical model is presented to simulate the nonlinear fracture process zone in cementitious materials. A cohesive type stress-separation constitutive relationship (σ-w curve) is incorporated in the model to represent the process zone. Numerical algorithms for both force-controlled (prescribed loading history) and crack-tip-control-led (prescribed crack tip position) are implemented to allow whole range simulations, including strain-softening and snap-back behavior. The numerical program includes special features to permit re-adjustment of nodal points such that accurate determination of the crack-tip position is achieved. A series of numerical simulations on both 3-point beams and double cantilever beams (DCB) are conducted to investigate the development of the inelastic process zone with respect to load level, loading configuration, specimen size, and the stress-separation relationship in the process zone. Size effect on fracture resistance is clearly demonstrated. Conclusions are drawn regarding the importance of determining the details of σ-w curve (i.e., the values of f t and w c )and the need for re-evaluating the R-curves approach in cementitious materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bazant, Z. P. (1976): Instability, ductility and size effect in strain-softening concrete. J. Eng. Mech. Div. 102, E2, 331–344

    Google Scholar 

  • Bazant, Z. P. (1984): Size effect in brittle failure of concrete structures. J. Eng. Mech. 110, 518–535

    Google Scholar 

  • Bazant, Z. P. (1985): Fracture in concrete and reinforced concrete. In: Bazant, Z. (ed.): Mechanics of geomaterials, pp. 259–303. New York: Wiley

    Google Scholar 

  • Bazant, Z. P. (1985): Determination of fracture energy from size effect and brittleness number. ACI Material J. Nov.-Dec., 463–480

  • Bazant, Z. P., Oh, B. H. (1983): Crack band theory for fracture of concrete. Mater. Struct. (RILEM, Paris), 16, 155–177

    Google Scholar 

  • Carpinteri, A. (1982): Application of fracture mechanics to concrete structure. J. Struct. Div. 108, ST4, 833–848

    Google Scholar 

  • Carpinteri, A. (1989): Size effect on strength, toughness and ductility. J. Eng. Mech. 115, 1375–1392

    Google Scholar 

  • Colombo, G., Limido, E. (1983): Un metodo numerico per l'analisi di prove TPBT stabili, confronto con alcuni dati sperimentali, XI Convegno Nazional dell'Associazione Italiana per L'Analisi delle Sollecitazioni, Torino, pp. 233–243

  • DiTommaso, A (1984): Evaluation of concrete fracture. In: Carpinteri, A.: Ingraffea, R. (eds): Fracture mechanics of concrete, pp. 31–65. The Hague: Martinus Nijhoff

    Google Scholar 

  • Foote, R. M. L.; Cotterell, B.; Mai, Y. W. (1980): Crack growth resistance curve for a cement composite. Advances in cement-matrix composites, Symposium L, Materials Research Society, Boston, MA, pp. 135–144

  • Gerstle, W. H.; Ingraffea, A. R.; Gergely, P. (1982): The fracture mechanics of bond in reinforced concrete. Report 82-7, Department of Civil Engineering, Cornell University

  • Hillerborg, A. (1985): Numerical method to simulate softening and fracture of concrete. In: Sih, G. C.; DiTommaso, A. (eds): Fracture mechanics of Concrete, pp. 141–170. Martinus Nijhoff Publishers, Dordrecht:

    Google Scholar 

  • Hillerborg, A.; Modéer, M.; Peterson P. E. (1976): Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 6, 113–182

    Google Scholar 

  • Jenq, Y. S.; Shah, S. P. (1985a): A fracture toughness criterion for concrete. Eng. Fract. Mech. 21, 1055–1069

    Google Scholar 

  • Jenq, Y. S.; Shah, S. P. (1985b): A two parameter fracture model for concrete. J. Eng. Mech. Div. 111, 1227–1241

    Google Scholar 

  • Lenian, J. C.; Bunsell, A. R. (1979): The resistance to crack growth of asbestos cement. J. Mater. Sci. 14, 321–332

    Google Scholar 

  • Liang, R. Y.; Li, Y. N. (1991): A study on size effect by fictitious crack model. J. Eng. Mech. (in press)

  • Li, V. C.; Liang, E. (1985): Fracture process in concrete and fiber reinforced cementitious composites. J. Eng. Mech. 112, 566–586

    Google Scholar 

  • Li, V. C.; Ward, R. J. (1988): A novel testing technique for post-peak tensile behavior of cementitious materials. Proc. Int. Workshop of Fracture Toughness and Fracture Energy—Test Methods for Concrete and Rock

  • Mindess, S. (1984): Fracture toughness testing of cement and concrete. In: Carpinteri, A.; Ingraffea, R. (eds): Fracture mechanics of concrete, pp. 67–110. The Hague: Martinus Nijhoff

    Google Scholar 

  • Mindess, S.; Lawrance, F. V.; Kesler, C. E. (1977): The J-integral as a fracture criterion for fiber reinforced concrete. Cem. Concr. Res. 7, 731–742

    Google Scholar 

  • Peterson, P. E. (1981): Crack growth and development of fracture zones in plain concrete and similar materials. Report TVBM-1006, Div. of Building Materials, Lund Institute of Technology

  • Rice, J. R. (1968): A path independent integral and the approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 35, 379–386

    Google Scholar 

  • Roelfstra, P.; Wittmann, F. (1987): Numerical modeling of fracture of concrete. Transact. 9th Int. Conf. Struc. Mech. Reactor Technol. pp. 41–50

  • Shah, S. P. (1984): Dependence of concrete fracture toughness on specimen geometry and on composition. In: Carpinteria, A.; Ingraffea, A. R. (eds.): Fracture mechanics of concrete pp. 111–135. The Hague: Martinus Nijhoff

    Google Scholar 

  • Shah, S. P.; Chandra, J. (1968): Critical stress, volume change, and microcracking of concrete. J. ASCE. 65, 770–781

    Google Scholar 

  • Shah, S. P.; Slate, F. O. (1968): Internal microcracking, mortar-aggregate bond and the stress-strain curve of concrete. Cem. Concr. Assoc., 82–92

  • Shah, S. P.; Winter, G. (1968): Inelastic behavior and fracture of concrete. SP-20, ACI, 5–28

    Google Scholar 

  • Shah, S. P.; McGarry, R. J. (1971): Griffith fracture criteria and concrete. J. Eng. Mech. Div. 47, EM6, 1633–1676

    Google Scholar 

  • Visalvanich, K.; Naaman, A. E. (1982): Fracture modeling of fiber reinforced cementitious composites. Report 82-1. Department of Materials Engineering, University of Illinois at Chicago Circle

  • Wecharatana, M.; Shah, S. P. (1980): Double torsion tests for studying slow crack growth of portland cement mortar. Cem. Concr. Res. 10, 833–844

    Google Scholar 

  • Wecharatana, M.; Shah, S. P. (1982): Slow crack growth in cement composites. J. Struct. Div. 108, ST6, 1400–1413

    Google Scholar 

  • Wecharatana, M.; Shah, S. P. (1983a): Predictions of nonlinear fracture process zone in concrete. J. Eng. Mech. 109, 1231–1245

    Google Scholar 

  • Wecharatana, M.; Shah, S. P. (1983b): Nonlinear fracture mechanics parameters. In: Wittman, F. H. (ed.): Fracture mechanics of concrete, pp. 463–480. Amsterdam: Elsevier

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by S. N. Atluri, January 23, 1990

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, R.Y.K., Li, Y.N. Simulations of nonlinear fracture process zone in cementitious material—a boundary element approach. Computational Mechanics 7, 413–427 (1991). https://doi.org/10.1007/BF00350169

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00350169

Keywords

Navigation