Skip to main content
Log in

Survey of the occurrence and morphology of sub-cuticular bacteria in shelf echinoderms from the north-east Atlantic Ocean

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Echinoderms from the shelf seas around the British Isles were examined by epifluorescence and transmission electron microscopy for the presence of sub-cuticular bacteria (SCB). Information was obtained on SCB distribution in 63 of the 88 species known from this area, and 40 of these contained SCB. The SCB were present in all five classes. Only 39% of the holothurian species had SCB. In each of the other four classes, ≥60% of the species were associated with SCB. No correlation was noted between host ecology and SCB distribution or morphology. SCB distribution appeared to be related to host phylogeny. Congeneric echinoderms almost always had or lacked SCB, and this was usually also true for co-familial species. SCB showed limited morphological diversity, with all of them fitting into a classification of three general types. There was no morphological evidence suggesting that they are chemoautotrophs or methylotrophs. Some species had two morphological types of symbiont. SCB load was quantified for four species, three of which had symbiont densities >109 SCB g-1 ash-free dry wt. SCB are probably heterotrophic and may be co-evolving with their hosts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bamford D (1982) Epithelial absorption. In: Jangoux M, Lawrence JM (eds) Echinoderm nutrition. Balkema, Rotterdam, pp 317–330

    Google Scholar 

  • Bell AC (1974) Histology and ultrastructure of Acronida brachiata. Unpublished PhD thesis. Queen's University, Belfast

    Google Scholar 

  • Berkeley RCW (1979) Structure and classification of prokaryotic micro-organisms. In: Hawker LE, Linton AH (eds) Micro-organisms: function, form and environment. 2nd edn. Arnold, London, pp 135–175

    Google Scholar 

  • Bosch C (1976) Sur un noveau type de symbiose chez la bonellie (Bonellia viridis, echiurien). Cr hebd Séanc Acad Sci, Paris 282: 2179–2182

    Google Scholar 

  • Bosch I (1992) Symbiosis between bacteria and oceanic clonal sea star larvae in the western North Atlantic Ocean. Mar Biol 114: 495–502

    Google Scholar 

  • Burgh ME de, Juniper SK, Singla CL (1989) Bacterial symbiosis in Northeast Pacific Vestimentifera: a TEM study. Mar Biol 101: 97–105

    Google Scholar 

  • Cameron RA, Holland ND (1983) Electron microscopy of extracellular materials during the development of a seastar, Patiria miniata (Echinodermata; Asteroidea). Cell Tissue Res 234: 193–200

    Google Scholar 

  • Cavanaugh CM (1983) Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich environments. Nature Lond 302: 58–61

    Google Scholar 

  • Cavanaugh CM, Gardiner SL, Jones MLS, Jannasch HW, Waterbury JB (1981) Prokaryotic cells in the hydrothermal vent tube worm Riftia pachyptila; possible chemoautotrophic symbionts. Science, NY 213: 340–342

    Google Scholar 

  • Clark AM, Downey ME (1992) Starfishes of the Atlantic. Chapman & Hall, London

    Google Scholar 

  • Distel DL, Felbeck H (1987) Endosymbiosis in the lucinid clams Lucinoma aequizonata, Lucinoma annulata and Lucina floridana: a reexamination of the functional morphology of the gills as bacteria-bearing organs. Mar Biol 96: 79–86

    Google Scholar 

  • Douglas AE (1994) Symbiotic interactions. Oxford University Press, Oxford

    Google Scholar 

  • Douglas AE, Smith DC (1983) The cost of symbionts to the host in green hydra. Endocytobiology 2: 631–647

    Google Scholar 

  • Emson R (1985) Bone idle — a recipe for success? In: Keegan BF, O'Conner BDS (eds) Echinodermata. Balkema, Rotterdam, pp 25–30

    Google Scholar 

  • Fenchel T, Perry T, Thane A (1977) Anaerobiosis and symbiosis with bacteria in free-living ciliates. J Protozool 24: 154–163

    Google Scholar 

  • Féral JP (1980) Cuticule et bacteréries associées des épidermes digestif et tégumentaire de Leptosynapta galliennei (Herapath) (Holothuroidea: Apoda) — premiéres données. In: Jangoux M (ed) Echinoderms present and past. Balkema, Rotterdam, pp 285–290

    Google Scholar 

  • Fisher CR, Brooks JM, Vodenichar JS, Zande JM, Childress JJ, Burke RA Jr (1993) The co-occurrence of methanotrophic and chemoautotrophic sulfur-oxidising bacterial symbionts in a deep-sea mussel. Pubbl Staz Zool Napoli (I: Mar Ecol) 14: 277–289

    Google Scholar 

  • Fisher CR, Childress JJ, Oremland RS, Bidigare RR (1987) The importance of methane and thiosulphate in the metabolism of the symbionts of two deep-sea mussels. Mar Biol 96: 59–71

    Google Scholar 

  • Giere O (1981) The gutless marine oligochaete Phallodrilus leukodermatus. Structural studies on an aberrant tubificid associated with bacteria. Mar Ecol Prog Ser 5: 353–357

    Google Scholar 

  • Grimmer JC, Holland ND (1990) The structure of a sessile, stalkless crinoid (Holopus rangii). Acta zool, Stock 71: 61–67

    Google Scholar 

  • Haszprunar G, Schaefer K, Waren A, Hain S (1995) Bacterial symbionts in the epidermis of an Antarctic neopilinid limpet (Mollusca, Monoplacophora). Proc R Soc (B) (in press)

  • Hausmann K (1982) Elektronenmikroskopische Untersuchungen an Anaitides mucosa (Annelida Polychaeta). Cuticular und Cilien, Schleimzellen und Scheimextrusion. Helgoländer wiss Meeresunters 35: 79–96

    Google Scholar 

  • Heinzeller T, Welsch U (1994) Crinoidea. In Harrison FW, Chia F-S (eds) Microscopic anatomy of invertebrates. Vol. 14. Echinodermata. Wiley-Liss, New York, pp 9–148

    Google Scholar 

  • Holland ND, Grimmer JC, Weigmann K (1991) The structure of the sea lily Calamocrinus diomedae, with special reference to the articulations, skeletal microstructure, symbiotic bacteria, axial organs and stock tissues. (Crinoida, Millericrinida) Zoomorphology 110: 115–132

    Google Scholar 

  • Holland ND, Nealson KH (1978) The fine structure of the echinoderm cuticle and subcuticular bacteria of echinoderms. Acta zool, Stock 59: 169–185

    Google Scholar 

  • Jangoux M (1982) Food and feeding mechanisms: Asteroidea. In: Jangoux M, Lawrence JM (eds) Echinoderm nutrition. Balkema, Rotterdam, pp 117–159

    Google Scholar 

  • Kelly MS, Barker MF, McKenzie JD, Powell J (1995) The incidence and morphology of sub-cuticular bacteria in the echinoderm fauna of New Zealand. Biol Bull mar biol Lab, Woods Hole (in press)

  • Kelly MS, McKenzie JD (1992) The quantification of sub-cuticular bacteria in echinoderms. In: Scalera-Liaci L, Canicatti C (eds) Echinoderm research 1991. Balkema, Rotterdam, pp 225–228

    Google Scholar 

  • Kelly MS, McKenzie JD, Barker M (1994) Sub-cuticular bacteria: their incidence in the echinoderms of the British Isles and New Zealand. In: David B, Guille A, Féral J-P, Roux M (eds) Echinoderms through time (Echinoderms: Dijon) Balkema, Rotterdam, pp 33–38

    Google Scholar 

  • Lawrence JM, Lane JM (1982) The utilization of nutrients by post-metamorphic echinoderms. In: Jangoux M, Lawrence JM (eds) Echinoderm nutrition. Balkema, Rotterdam, pp 331–371

    Google Scholar 

  • Lesser MP, Blakemore RP (1990) Description of a novel symbiotic bacterium from the brittlestar Amphipholis squamata. Appl envirl Microbiol 56: 2436–2440

    Google Scholar 

  • Lesser MP, Walker CW (1992) Comparative study of the uptake of dissolved amino acids in sympatric brittlestars with and without endosymbiotic bacteria. Comp Biochem Physiol 101B: 217–223

    Google Scholar 

  • Lutaud G (1969) La nature des corps funiculaires des cellularines bryozoaires chilostomes. Archs Zool exp gén 110: 2–30

    Google Scholar 

  • Lutaud G (1986) Linestation du myoépithélium de l'oesphage par des microorganismes pigmentés et la structure des organes à bactéries du vestibule chez le brizoaire chilostome Palmicellaria skenei (E. et S.). Can J Zool 64: 1842–1851

    Google Scholar 

  • Mackie GO, Bone Q (1978) Luminescence and associated effector activity in Pyrosoma (Tunicata: Pyrosomida). Proc R Soc (Ser B) 202: 483–495

    Google Scholar 

  • Margulis L (1981) Symbiosis in cell evolution. Freeman, San Francisco

    Google Scholar 

  • Margulis L, Fester R (1991) Symbiosis as a source of evolutionary innovation. MIT Rress, Cambridge, Mass

    Google Scholar 

  • Märkel K, Röser U (1985) Comparative morphology of echinoderm calcified tissues: histology and ultrastructure of ophiuroid scales (Echinodermata, Ophiuraida) Zoomorphology 105: 197–207

    Google Scholar 

  • McKenzie JD (1987) The ultrastructure of the tentacles of eleven species of dendrochirote holothurians studied with special reference to the surface coats and papillae. Cell Tissue Res 248: 187–199

    Google Scholar 

  • McKenzie JD (1988 a) The ultrastructure of the tentacles of the apodous holothurian Leptosynapta spp. (Holothurioidea: Echinodermata) with special reference to the epidermis and surface coats. Cell Tissue Res 251: 387–397

    Google Scholar 

  • McKenzie JD (1988 b) Echinoderm surface coats: their ultrastructure, function and significance. In: Burke RD et al. (eds) Echinoderm biology. Balkema, Rotterdam pp 697–706

    Google Scholar 

  • McKenzie JD (1991) The taxonomy and natural history of North European dendrochirote holothurians (Echinodermata). J nat Hist 25: 123–171

    Google Scholar 

  • McKenzie JD (1992) Comparative morphology of crinoid tube feet. In: Scalera-Liaci L, Canicattì C (eds) Echinoderm research 1991. Balkema, Rotterdam, pp 73–79

    Google Scholar 

  • McKenzie JD, Kelly MS (1994) A comparative study of subcuticular bacteria in brittlestars (Echinodermata: Ophiurodea). Mar Biol 120: 65–80

    Google Scholar 

  • Menon JG, Arp AJ (1993) The integument of the marine echiuran worm Urechis caupo. Biol Bull mar biol Lab, Woods, Hole 185: 440–454

    Google Scholar 

  • Mortensen TH (1927) Handbook of the echinoderms of the British Isles. Oxford University Press, London

    Google Scholar 

  • Neidhardt FC, Ingraham JL, Schaechter M (1990) Physiology of the bacterial cell: a molecular approach. Sinauer, Sunderland, Mass

    Google Scholar 

  • Ott J, Rieger G, Rieger R, Enderes F (1982) New mouthless interstitial worms from the sulphide system: symbiosis with prokaryotes. Pubbl Staz zool Napoli (I: Mar Ecol) 3: 313–333

    Google Scholar 

  • Palincsar EE, Jones WR, Palincsar JS, Glogowski MA, Mastro JL (1989) Bacterial aggregates within the epidermis of the sea anemone Aiptasia pallida. Biol Bull mar biol Lab, Woods Hole 177: 130–140

    Google Scholar 

  • Panning A (1949) Versuch einer Neuordung der Familie Cucumaridae (Holothuroidea, Dendrochirotida). Zool Jb (Syst Ökol Geogr Tiere) 78: 404–470

    Google Scholar 

  • Paul CRC, Smith AB (1984) The early radiation and phylogeny of echinoderms Biol Rev 59: 443–481

    Google Scholar 

  • Powell MA, Somero GN (1983) Blood components prevent blood poisoning of respiration of the hydrothermal vent tube worm Riftia pachyptila. Science, NY 219: 297–299

    Google Scholar 

  • Prieur D (1991) Interactions between bacteria and other organisms in the marine environment. Kieler Meeresforsch 8: 231–239

    Google Scholar 

  • Roberts D, Billet DSM, McCartney G, Hayes GE (1991) Procaryotes on the tentacles of deep-sea holothurians: a novel form of dietary supplementation. Limnol Oceanogr 36: 1447–1452

    Google Scholar 

  • Saffo MB (1990) Symbiosis within a symbiosis: intracellular bacteria within the endosymbiotic protist Nephromyces. Mar Biol 107: 291–296

    Google Scholar 

  • Shick JM (1983) Respiratory gas exchange in echinoderms. Echinoderm Stud 1: 67–110

    Google Scholar 

  • Smith DC, Douglas AE (1987) The biology of symbiosis. Arnold, London

    Google Scholar 

  • Southward EC (1986) Gill symbionts in thyasirids and other bivalve molluscs. J mar biol Ass UK 66: 889–914

    Google Scholar 

  • Souza Santos H, Sasso WS (1970) Ultrastructural and histochemical studies on the epithelium revestment layer in the tube feet of the starfish Asterina stellifera. J Morph 130: 287–296

    Google Scholar 

  • Sparks AK (1985) Synopsis of invertebrate pathology. Elsevier, Amsterdam

    Google Scholar 

  • Stanier RY, Adelberg EA, Ingraham JL (1977) General microbiology. MacMillan, London

    Google Scholar 

  • Vacelet J, Donadey C (1977) Electron microscopy study of the association between some sponges and bacteria. J exp mar Biol Ecol 30: 301–314

    Google Scholar 

  • Vetter RD (1985) Elemental sulfur in the gills of three species of clams containing chemoautotrophic symbiotic bacteria: a possible inorganic storage compound. Mar Biol 88: 33–42

    Google Scholar 

  • Walker CW, Lesser MP (1989) Nutrition and development of brooded embryos in the brittlestar Amphipholis squamata: do endosymbiotic bacteria play a role? Mar Biol 103: 519–530

    Google Scholar 

  • Welsch U (1984) Hemichordata. In: Bereiter-Hann J, Matolsty AG, Richards KS (eds) Biology of the integument. Vol 1. Springer Verlag, Berlin, pp 791–799

    Google Scholar 

  • Wilkinson CR (1978) Microbial associations in sponges. II. Numerical analysis of sponge and water bacterial populations. Mar Biol 49: 169–176

    Google Scholar 

  • Wilkinson CR (1984) Immunological evidence for the Precambrian origin of bacterial symbioses in marine sponges. Proc R Soc (Ser B) 220: 509–517

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J. Mauchline, Oban

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, M.S., McKenzie, J.D. Survey of the occurrence and morphology of sub-cuticular bacteria in shelf echinoderms from the north-east Atlantic Ocean. Marine Biology 123, 741–756 (1995). https://doi.org/10.1007/BF00349117

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00349117

Keywords

Navigation