Skip to main content
Log in

Wirkung unterschiedlicher Konzentrationen von NaCl und anderen osmotisch wirksamen Substanzen auf die CO2-Fixierung der einzelligen Alge Platymonas subcordiformis

  • Published:
Oecologia Aims and scope Submit manuscript

Summary

The photosynthetic incorporation of H14CO3 - by the alga Platymonas subcordiformis decreased with increasing concentrations of NaCl in the medium. There was no correlation between the response of P. subcordiformis to salinity in high or low NaCl-concentrations in the growing solution. When other osmotic substances were used (KCl, sucrose, sorbitol, manitol, xylitol) the incorporation of 14C also decreased. Under low salt conditions the decline of photosynthesis depended on the NaCl concentration of the culture medium (adaptation).

In contrast to photosynthesis incorporation of H14CO3 - in the dark increased with hypo- or hyperosmotic stress. The increase depended on the concentration of added NaCl (or other osmotic substances) and on the salinity of the growing solution (adaptation).

The incorporation of radiocarbon into the neutral fraction (carbohydrates) during photosynthesis was remarkably stimulated by hyperosmotic conditions whereas hypoosmotic stress caused a decrease. This was due to the change of the content of mannitol under different osmotic stresses.

Compared with the control incorporation rates of 14C into amino acids and organic acids were lower with both hypo- and hyperosmotic stress. As a consequence of the declining incorporation of 14C into mannitol after hypoosmotic stress the distribution of radiocarbon in the amino acid, organic acid, and neutral fraction was changed. Incorporation rates of 14C into the control and into algae after hyperosmotic stress were in the order, neutral fraction ≫ amino acids > organic acids, while incorporation rates after hypoosmotic stress were in the order, amino acids > organic acids, neutral fraction. The most labelled individual amino acids were glutamate, alanine, aspartate, and proline. The incorporation into alanine increased with hyperosmotic conditions. The most labelled organic acids were citrate and malate.

14C-fixation in the dark resulted in strong labelling of amino acids and organic acids and low incorporation into the neutral fraction. Fixation rates of 14C with hyperosmotic stress were in the order, amino acids ≫ neutral fraction > organic acids. In constrast, the rates with hypoosmotic conditions were in the order, organic acids > amino acids ≫ neutral fraction. The major portion of the radioactivity of amino acids was found in glutamate, proline, and aspartate. With hyperosmotic stress the incorporation of 14C into these amino acids increased, while after hypoosmotic stress the incorporation declined. With hyperosmotic conditions a remarkable increase of the organic acids, especially that of malate, was observed. From these data it is suggested that Platymonas has different metabolic responses to hyper- and hyposmotic stress, although with both osmotic stresses the same general effects were observed: a decline in the rate of photosynthesis and stimulation of CO2-fixation in the dark.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Akagawa, H., Ikawa, T., Nisizawa, K.: Initial pathway of dark 14CO2-fixation in brown algae. Bot. Marina XV, 119–125 (1972a)

    Google Scholar 

  • Akagawa, H., Ikawa, T., Nisizawa, K.: 14CO2-fixation in marine algae with special reference to the dark-fixation in brown algae. Bot. Marina XV, 126–132 (1972b)

    Google Scholar 

  • Akagawa, H., Ikawa, T., Nisizawa, K.: The enzyme system for the entrance of 14CO2 in the dark CO2-fixation of brown algae. Plant & Cell Physiol. 13, 999–1016 (1972c)

    Google Scholar 

  • Arnon, D. J.: Copper enzymes in isolated chloroplasts. Plant. Physiol. 24, 1–5 (1949)

    Google Scholar 

  • Batterton, J. C., Van Baalen, C.: Growth responses of blue-green algae to sodium chloride concentration. Arch. Mikrobiol. 76, 151–165 (1971)

    Google Scholar 

  • Craigie, J. S., Dark fixation of C14-bicarbonate by marine algae. Can. J. Bot. 41, 317–325 (1963)

    Google Scholar 

  • Craigie, J. S., McLachlan, J., Ackman, R. G., Tocher, C. S.: Photosynthesis in algae. III. Distribution of soluble carbohydrates and Dimethyl-β-Propiothetin in marine unicellular Chlorophyceae and Prasinophyceae. Can. J. Bot. 45, 1327 (1967)

    Google Scholar 

  • Craigie, J. S., McLachlan, J., Majak, W., Ackman, R. G., Tocher, C. S.: Photosynthesis in algae. II. Green algae with special reference to Dunaliella spp. and Tetraselmis spp. (=Platymonas). Can. J. Bot. 44, 1247 (1966)

    Google Scholar 

  • Eppley, R. W., Cyrus, C. C.: Cation regulation and survival of the red alga, Porphyra perforata, in diluted and concentrated sea water. Biol. Bull. 118, 55–65 (1960)

    Google Scholar 

  • Feige, B., Gimmler, H., Jeschke, W. D., Simonis, W.: Eine Methode zur dünnschichtchromatographischen Auftrennung con 14C- und 32P-markierten Stoffwechselprodukten. J. Chromatography 3970, 1–21 (1969)

    Google Scholar 

  • Fott, B.: Algenkunde. Stuttgart: Fischer 1971

    Google Scholar 

  • Hammer, L.: Salzgehalt und Photosynthese bei marinen Pflanzen. Marine Biology 1, 185–190 (1968)

    Google Scholar 

  • Ikawa, T., Watanabe, T., Nisizawa, K.: Enzymes involved in the last steps of the biosynthesis of mannitol in brown algae. Plant & Cell Physiol. 13, 1017–1029 (1972)

    Google Scholar 

  • Joshi, G., Dolan, Th., Gee, R., Saltman, P.: Sodium chloride effect on dark fixation of CO2 by marine and terestrial plants. Plant Physiol. 37, 446–449 (1962)

    Google Scholar 

  • Kaneshiro, E. S., Holz, G. G., Dunham, P. B.: Osmoregulation in a marine ciliate, Miamiensis avidus. II. Regulation of intercellular free amino acids. Biol. Bull. 137, 161–169 (1969)

    Google Scholar 

  • Kauss, H.: Isofloridosid und Osmoregulation bei Ochromonos malhamensis. Z. Pflanzenphysiol. 56, 453–465 (1967)

    Google Scholar 

  • Kirst, G. O.: Beziehung zwischen Mannitkonzentration und osmotischer Belastung bei der Brackwasseralge Platymonas subcordiformis. Z. Pflanzenphysiol. (im Druck, 1975)

  • Kronberg, H. L.: Anaplerotische Sequenzen im mikrobiologischen Stoffwechsel. Angewandte Chemie 77, 601–609 (1965)

    Google Scholar 

  • Kraffczyk, F.: Kontakte 1/72. Darmstadt: Merck 1972

    Google Scholar 

  • Kremer, B. P., Willenbrink, J.: CO2-Fixierung und Stofftransport in benthischen marinen Algen: I. Zur Kinetik der 14CO2-Assimilation bei Laminaria saccharina. Planta (Berl.) 103, 55–64 (1972)

    Google Scholar 

  • Kylin, H.: Über Rhodomonas, Platymonas und Prasinocladus. Kungl. Fysiogr. Sällsk. Lund. Förh. 5, 1–13 (1935)

    Google Scholar 

  • Majak, W., Craigie, J. S., McLachlan, J.: Photosynthesis in alage. I. Accumulation products in Rhodophyceae. Can. J. Bot. 44, 541 (1966)

    Google Scholar 

  • Manton, J., Parke, M.: Observations on the fine structure of two species of Platymonas with special reference to flagellar scales and the mode of origin of the theca. J. mar. biol. Ass. U.K. 45, 743–754 (1965)

    Google Scholar 

  • McLachlan, J.: The effect of salinity on growth and chlorophyll content in representative classes of unicellular marine algae. Can. J. Microbiol. 7, 399–406 (1961)

    Google Scholar 

  • Montfort, C.: Assimilation und Stoffgewinn der Meeresalgen bei Aussüßung und Rückversalzung. Bern deut., Bot. Ges. 49, (49)-(66) (1931)

    Google Scholar 

  • Nellen, U. R.: Über den Einfluß des Salzgehaltes auf die photosynthetische Leistung verschiedener Standortformen von Delesseria sanguinea und Fucus serratus. Helgoländer wissenschaftl. Meeresuntersuchungen 13, 288–313 (1966)

    Google Scholar 

  • Ohmann, E., Plhák, F.: Reinigung und Eigenschaften von Phosphoenol-pyruvat-Carboxylase aus Euglena gracilis. Eur. J. Biochem. 10, 43–55 (1969)

    Google Scholar 

  • Schobert, B.: The influence of water stress on the metabolism of Diatoms: I. Osmotic resistance and proline accumulation in Cyclotella meneghiniana. Z. Pflanzenphysiol. 74, 106–120 (1974)

    Google Scholar 

  • Stahl, E.: Dünnschichtchromatographie. Berlin-Heidelberg-New York: Springer 1967

    Google Scholar 

  • Stewart, W. D. P.: Algal physiology and biochemistry. Oxford-London-Edinburgh-Melbourne: Blackwell 1974

    Google Scholar 

  • Stewart, G. R., Lee, J. A.: The role of proline accumulation in halophytes. Planta (Berl.) 120, 279–289 (1974)

    Google Scholar 

  • Treichel, S.: Der Einfluß von NaCl auf die Prolinkonzentration verschiedener Halophyten. Z. Pflanzenphysiol. (im Druck, 1975)

  • Treichel, S. P., Kirst, G. O., von Willert, D. J.: Veränderung der Aktivität der Phosphoenolpyruvat-Carboxylase durch NaCl bei Halophyten verschiedener Biotope. Z. Pflanzenphysiol. 71, 437–449 (1974)

    Google Scholar 

  • Webb, K. L., Burley, J. W. A.: Dark fixation of 14CO2 by obligate und facultative salt marsh halophytes. Can. J. of Bot. 43, 281–285 (1965)

    Google Scholar 

  • Wegmann, K.: Osmotic regulation of photosynthetic glycerol production in Dunaliella. Biochim. Biophys. Acta 234, 317–323 (1971)

    Google Scholar 

  • Yamaguchi, T., Ikawa, T., Nisizawa, K.: Pathway of mannitol formation during photosynthesis in brown algae. Plant. Cell. Physiol. 10, 425–440 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirst, G.O. Wirkung unterschiedlicher Konzentrationen von NaCl und anderen osmotisch wirksamen Substanzen auf die CO2-Fixierung der einzelligen Alge Platymonas subcordiformis . Oecologia 20, 237–254 (1975). https://doi.org/10.1007/BF00347476

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00347476

Navigation