Skip to main content
Log in

Ciliary-structure precursor bodies as stable constituents in the sensory cells of the vomero-nasal organ of reptiles and mammals

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

The sensory cells of the vomero-nasal organ in reptiles and mammals do not develop cilia. In several species they contain centrioles together with cilium-structure precursor bodies measuring 400–700 Å in diameter. These structures resemble axonemal precursor bodies which are known to occur in developing ciliated cells. They are enclosed in a fibrogranular matrix. The precursor bodies are resistant to pepsin digestion in Araldite sections. In Tupaia precursor bodies may join periodically in a row. In the vomero-nasal receptor cells the precursor bodies can be considered stabilized with a corresponding reduction of cilia. The periodically arranged precursor bodies could represent a special storage form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altner, H., Müller, W.: Elektrophysiologische und elektronenmikroskopische Untersuchungen an der Riechschleimhaut des Jakobsonschen Organs von Eidechsen (Lacerta). Z. vergl. Physiol. 60, 151–155 (1968).

    Google Scholar 

  • —, Müller, W., Brachner, I.: The ultrastructure of the vomero-nasal organ in reptilia. Z. Zellforsch. 105, 107–122 (1970).

    Google Scholar 

  • Bannister, L. H.: Fine structure of the sensory nerve endings in the vomero-nasal organ of the slow-worm Anguis fragilis. Nature (Lond.) 217, 275–276 (1968).

    Google Scholar 

  • Behnke, O., Forer, A.: Evidence for four classes of microtubules in individual cells. J. Cell Sci. 2, 169–192 (1967).

    Google Scholar 

  • Bernhard, W., De Harven, E.: L'ultrastructure du centriole et d'autres éléments de l'appareil achromatique. In: 4th Int. Conf. Electron Microsc. Berlin 1958, 2, 217–227 (W. Bargmann, D. Peters and C. Wolpers, (eds.). Berlin-Göttingen-Heidelberg: Springer 1960.

  • Bessis, M., Breton-Gorius, J., Thiery, J. P.: Centriole, corps de golgi et aster des leucocytes. Rev. Hémat. 13, 363–368 (1958).

    Google Scholar 

  • Biava, C. G., Matsuura, S.: Morphogenesis of cilia from polyribosomes in differentiating tracheal epithelium. J. Cell Biol. 35, 13A (1967).

    Google Scholar 

  • Brenner, R. M.: Basal body development and ciliogenesis in rhesus monkey oviduct. Anat. Rec. 160, 508 (1968).

    Google Scholar 

  • De-Thé, G.: Cytoplasmic microtubules in different animal cells. J. Cell Biol. 23, 265–275 (1964).

    Google Scholar 

  • Dirksen, E. R., Crocker, T. T.: Centrioles replication in differentiating ciliated cells of mammalian respiratory epithelium. An electron microscopic study. J. Microscopie 5, 629–644 (1965).

    Google Scholar 

  • Drenckhahn, D.: Untersuchungen an Regio olfactoria und Nervus olfactorius der Silbermöve (Larus argentatus). Z. Zellforsch. 106, 119–142 (1970).

    Google Scholar 

  • Fawcett, D. W.: The cell, its organelles and inclusions. Philadelphia and London: W. B. Saunders 1966.

    Google Scholar 

  • Gall, J. G.: Centriole replication. A study of spermatogenesis in the snail Viviparus. J. Cell Biol. 10, 163–193 (1961).

    Google Scholar 

  • Gonatas, N. K., Robbins, E.: The homology of spindle tubules and neuro-tubules in the chick embryo retina. Protoplasma 59, 377–391 (1964).

    Google Scholar 

  • Graziadei, P. P. C., Tucker, D.: Vomeronasal receptors in turtles. Z. Zellforsch. 105, 498–514 (1970).

    Google Scholar 

  • Harven, E. De, Bernhard, W.: Étude au microscope électronique de l'ultrastructure du centriole chez les vertébrés. Z. Zellforsch. 45, 387–398 (1956).

    Google Scholar 

  • Lin, H.-S., Chen, I.-L.: Development of the ciliary complex and microtubules in the cells of the rat subcommissural organ. Z. Zellforsch. 96, 186–205 (1969).

    Google Scholar 

  • Murray, R. G., Murray, A. S., Pizzo, A.: The fine structure of mitosis in rat thymic lymphocytes. J. Cell Biol. 26, 601–619 (1965).

    Google Scholar 

  • Robbins, E., Jentzsch, G., Micali, A.: The centriole cycle in synchronized Hela cells. J. Cell Biol. 36, 329–339 (1968).

    Google Scholar 

  • Sorokin, S.: Centrioles and the formation of rudimentary cilia by fibroblasts and smooth muscle cells. J. Cell Biol. 15, 363–377 (1962).

    Google Scholar 

  • Sorokin, S.: Reconstruction of centrioles formation and ciliogenesis in mammalian lungs. J. Cell Sci. 3, 207–230 (1968).

    Google Scholar 

  • Steinman, R. N.: An electron microscopic study of ciliogenesis in developing epidermis and trachea in the embryo of Xenopus laevis. Amer. J. Anat. 122, 19–56 (1968).

    Google Scholar 

  • —: Inhibitory effects of colchicine on ciliogenesis in ectoderm of Xenopus laevis. J. Ultrastruct. Res. 30, 423–440 (1970).

    Google Scholar 

  • Stockinger, L., Cirelli, E.: Eine bisher unbekannte Art der Zentriolenvermehrung. Z. Zellforsch. 68, 733–740 (1965).

    Google Scholar 

  • Stubblefield, E., Brinkley, B. R.: Cilia formation in chinese hamster fibroblasts in vitro as a response to colcemid treatment, J. Cell Biol. 30, 645–652 (1966).

    Google Scholar 

  • Szollosi, D.: The structure and function of centrioles and their satellites in the jellyfish Phialidium gragarinum. J. Cell Biol. 465–479 (1964).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kolnberger, I., Altner, H. Ciliary-structure precursor bodies as stable constituents in the sensory cells of the vomero-nasal organ of reptiles and mammals. Z. Zellforsch. 118, 254–262 (1971). https://doi.org/10.1007/BF00341569

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00341569

Key-Words

Navigation