Skip to main content
Log in

Mutations in ADE3 reduce the efficiency of the omnipotent suppressor sup45-2

  • Original articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Mutations in a known yeast gene, ADE3, were shown to act as an antisuppressor, reducing the efficiency of the omnipotent suppressor, sup45-2. The ADE3 locus encodes the trifunctional enzyme C1-tetrahydrofolate synthase, which is required for the biosynthesis of purines, thymidylate, methionine, histidine, pantothenic acid and formylmethionyl-tRNAfmet. The role of this enzyme in translational fidelity had not previously been suspected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Appling D, Rabinowitz JC (1985) Biochemistry 24:3540–3547

    Google Scholar 

  • Birnboim HC, Doly J (1979) Nucleic Acids Res 7:1513–1523

    Google Scholar 

  • Blakley RL (1969) In: The biochemistry of folic acid and related pteridines. North Holland Publishing Co, Amsterdam, pp 219–353

    Google Scholar 

  • Breining P, Piepersberg W (1986) Nucleic Acids Res 14:5187–5197

    Google Scholar 

  • Caperelli CA, Benkovic PA, Chettur G, Benkovic SJ (1980) J Biol Chem 255:1885–1890

    Google Scholar 

  • Cohen SN, Chang AC, Hsu L (1973) Proc Natl Acad Sci USA 69:2110–2114

    Google Scholar 

  • Crouzet M, Tuite MF (1987) Mol Gen Genet 210:581–583

    Google Scholar 

  • Crouzet M, Izugu F, Grant CM, Tuite MF (1988) Curr Genet 14:537–543

    Google Scholar 

  • De Mata ZS, Rabinowitz JC (1980) J Biol Chem 255:2569–2577

    Google Scholar 

  • Delk AS, Romeo JM, Nagle DP Jr, Rabinowitz JC (1976) J Biol Chem 251:7649–7656

    Google Scholar 

  • Finkelstein DB, Strausberg S (1983) J Biol Chem 258:1908–1913

    Google Scholar 

  • Hawthorne DC, Leupold U (1974) Curr Top Microbiol Immunol 64:1–47

    Google Scholar 

  • Hicks JB, Strathern JN, Klar AS, Dellaporta SL (1982) In: Setlow JK, Hollaender A (eds) Genetic engineering 1982: principles and methods. Plenum Press, New York, pp 219–248

    Google Scholar 

  • Himmelfarb HJ, Maicas E, Friesen JD (1985) Cell Biol 5:816–822

    Google Scholar 

  • Hinnen A, Hicks JB, Fink JR (1978) Proc Natl Acad Sci USA 75:1229–1233

    Google Scholar 

  • Holmes DS, Quigley M (1981) Anal Biochem 114:193–197

    Google Scholar 

  • Hopper AK, Nolan SL, Kurjan J, Hama-Furukawa A (1981) In: Wettstein DV von, Friis J, Kielland-Brandt M, Stenderup A (eds) Molecular genetics in yeast. Munksgaard, Copenhagen, pp 302–325

    Google Scholar 

  • Huet J, Cottrelle P, Cool M, Vigais M-L, Thiele D, Marc C, Buhler J-M, Sentenac A, Fromageot P (1985) EMBO J 4:3539–3547

    Google Scholar 

  • Ishiguro J (1981) Curr Genet 4:197–204

    Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) J Bacteriol 153:163–168

    Google Scholar 

  • Jones EW (1977) Genetics 85:209–223

    Google Scholar 

  • Kushnirov VV, Ter-Ananesyan MD, Telckov MV, Surguchov AP, Smirnov VN, Inge-Vechtomov SG (1988) Gene 66:45–54

    Google Scholar 

  • Laten H, Gorman J, Bock M (1978) Nucleic Acids Res 5:4329–4342

    Google Scholar 

  • Leer RJ, Van Raamsdonk-Duin MM, Hagendoorn MJ, Mager WH, Planta RJ (1984) Nucleic Acids Res 17:6685–6700

    Google Scholar 

  • Leer RJ, Van Raamsdonk-Duin MM, Mager WH, Planta RJ (1985) Curr Genet 9:273–277

    Google Scholar 

  • Liebman SW, Cavenagh M (1980) Genetics 95:49–61

    Google Scholar 

  • Liebman SW, Cavenagh M (1981) Curr Genet 3:27–29

    Google Scholar 

  • Liebman SW, Sherman F, Stewart JW (1976) Genetics 82:251–272

    Google Scholar 

  • Liebman SW, Cavenagh M, Bennett LN (1980) J Bacteriol 143:1527–1529

    Google Scholar 

  • Liebman SW, Shalit P, Picologlou S (1981) Cell 26:401–409

    Google Scholar 

  • Liebman SW, Song JM, All-Robyn J, Griffin E, Kelley-Geraghty D (1988) In: Tuite MF, Picard M, Bolotin-Fukuhara M (eds) Genetics of translation. Springer, Berlin Heidelberg New York, pp 403–414

    Google Scholar 

  • MacKenzie RE (1984) In: Blakley RL, Benkovic SJ (eds) Folates and pterines, vol 1. John Wiley and Sons, New York, pp 255–306

    Google Scholar 

  • McCready SJ, Cox BS (1973) Mol Gen Genet 124:305–320

    Google Scholar 

  • McKenzie KQ, Jones EW (1977) Genetics 86:85–102

    Google Scholar 

  • Messing J (1982) In: Setlow JK, Hollaender A (eds) Genetic engineering: principles and methods, vol 4. Plenum Press, New York, pp 19–34

    Google Scholar 

  • Messing J, Crea R, Seeburg PH (1981) Nucleic Acids Res 9:309–321

    Google Scholar 

  • Paukert JL, Straus LD, Rabinowitz JC (1976) J Biol Chem 251:5104–5111

    Google Scholar 

  • Paukert JL, Williams GR, Rabinowitz JC (1977) Biochem Biophys Res Commun 77:147–154

    Google Scholar 

  • Rose M, Winston F (1984) Mol Gen Genet 193:557–560

    Google Scholar 

  • Rose MD, Novick P, Thomas JH, Botstein D, Fink GR (1987) Gene 60:237–243

    Google Scholar 

  • Rotenberg MO, Woolford JL (1986) Mol Cell Biol 6:674–687

    Google Scholar 

  • Sanger F, Nicklen S, Coulsen AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Schirch L (1978) Arch Biochem Biophys 189:283–290

    Google Scholar 

  • Shannon KW, Rabinowitz JC (1986) J Biol Chem 261:12266–12271

    Google Scholar 

  • Sherman F (1982) In: Strathern JN, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces: metabolism and gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 463–486

    Google Scholar 

  • Sherman F, Lawrence CW (1974) In: King RC (ed) Handbook of genetics, vol I. Plenum Publ Corp, New York, pp 359–393

    Google Scholar 

  • Sherman F, Fink GR, Hicks JB (1982) Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Song JM (1987) PhD Thesis, University of Illinois, Chicago, IL

  • Southern EM (1975) J Mol Biol 98:503–517

    Google Scholar 

  • Staben C, Rabinowitz JC (1986) J Biol Chem 261:4629–4637

    Google Scholar 

  • Tan LU, Drury EJ, MacKenzie RE (1977) J Biol Chem 252:1117–1122

    Google Scholar 

  • Teem JR, Abovich N, Kaufer N, Schwindinger WF, Warner JR, Levy A, Woolford J, Leer RJ, Van Raamsdonk-Duin MM, Mager WH, Planta RJ, Schultz L, Friesen JD, Fried H, Rosbach MM (1984) Nucleic Acids Res 12:8295–8312

    Google Scholar 

  • Tuite MF (1989) In: Rose AH, Harrisons JS (eds) Yeast, vol 3, 2nd edn. Academic Press, New York, pp 161–204

    Google Scholar 

  • Wilson PG, Culbertson MR (1988) J Mol Biol 199:559–573

    Google Scholar 

  • Wouldt LP, Smit AB, Mager WH, Planta R (1986) EMBO J 5:1037–1040

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, J.M., Liebman, S.W. Mutations in ADE3 reduce the efficiency of the omnipotent suppressor sup45-2 . Curr Genet 16, 315–321 (1989). https://doi.org/10.1007/BF00340709

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00340709

Key words

Navigation