Skip to main content
Log in

On the fine structure of the frog's rod outer segments, observed by the freeze-etching technique

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

The fine structure of the frog's (Rana esculenta) rod outer segments was investigated by two different methods: most of the experiments were made by means of the freeze-etching technique. The replicas were then examined by electron microscopy (40,000 X).

By means of a second method, rod outer segments were negatively stained prior to electron microscopy.

Inspection of the electron micrographs revealed that the frog's rod outer segments seem to be built up of three groups of “elongated structures” interpreted as fibrils (Fäden) arranged regularly at approximately equal distances. The diameters of the fibrils are below 100 Å; they depend on the state of light adaptation and on the chemical preparation before freeze-etching. The fibrils partly cross each other. In addition, there were found four groups of approximately equal distances between the fibrils. The order of magnitude of these spacings is from about 50 Å to a few hundred Å.

Negatively stained outer segments also reveal fibrils. The results are expressed in a working hypothesis consisting of two parts. It is supposed first that the core of the rod outer segment represents a three dimensional paracrystalline lattice (Raumgitter) of three different types of fibrils (d 1, d2, d4). The distances between the fibrils are interpreted as the lattice constants (a 1, a2, a3, a4). A unit cell of the lattice would consist of a web (Geflecht) of two different types of fibrils (d 1, d2) and four layers of parallel fibrils of the third type (d 4).

It is supposed, secondly, on the basis of a volume-evaluation, that the d1-fibrils contain rhodopsin, those of type d 2 another protein (not rhodopsin), and fibrils of type d 4 lipids.

The working hypothesis is supported by experimental findings of other authors (obtained by negative staining and diffraction of light and X-rays).

Attempts have been made to relate some electron micrographs of ultrathin sections to those of replicas. (Rosenkranz et al., 1969; Rosenkranz, 1969a.)

Zusammenfassung

Der Feinbau der Stäbchenaußenglieder des Frosches (Rana esculenta) wurde mit zwei verschiedenen Methoden untersucht: der größte Teil der Untersuchungen wurde mit der Gefrierätzmethode durchgeführt. Die Abdrucke (Masken der Bruchflächen) wurden im Elektronenmikroskop bei 40000facher Vergrößerung betrachtet.

Als zweite, von der ersten unabhängigen Methode, wurden Teile negativ kontrastierter Außenglieder des Frosches im Elektronenmikroskop betrachtet.

Die Auswertung der elektronenmikroskopischen Aufnahmen von Abdrucken ergab: die Außenglieder des Frosches scheinen aus 3 Gruppen „länglicher Gebilde“ aufgebaut zu sein, die in jeweils angenähert gleichen Abständen angeordnet sind. Die „länglichen Gebilde“ werden als Fäden bezeichnet; ihre Durchmesser liegen unter 100 Å. Die Größe der Durchmesser hängt vom Adaptationszustand und der chemischen Behandlung vor der Gefrierätzung ab. Die Fäden überkreuzen sich z.T. — Es wurden ferner 4 Gruppen angenähert gleicher Abstände zwischen den Fäden gefunden. Die Größe dieser Abstände liegt zwischen etwa 50 Å und einigen hundert Å.

Negativ kontrastierte Außenglieder ließen ebenfalls Fäden erkennen.

Die Ergebnisse werden zu einer zweiteiligen Arbeitshypothese zusammengefaßt. Im 1. Teil der Arbeitshypothese wird angenommen: der Innenkörper des Außengliedes (das ist das Außenglied ohne die erkennbare Zellmembran) ist ein dreidimensionales parakristallines Raumgitter, aufgebaut aus den 3 verschiedenen dicken Fadenarten (d 1, d2, d4). Die Abstände zwischen den Fäden werden als Gitterkonstanten (a 1, a2, a3, a4) dieses Raumgitters aufgefaßt. Eine Elementarzelle des Gitters scheint aus einem Geflecht aus d 1- und d 2-Fäden zu bestehen und aus vier darüberliegenden Schichten paralleler d 4-Fäden.

Im 2. Teil der Arbeitshypothese wird auf Grund von Volumenabschätzungen angenommen: die d 1-Fäden des Raumgitters enthalten Rhodopsin, die d 2-Fäden Protein, das nicht Rhodopsin ist, und die (d 4-Fäden enthalten Lipide.

Die Arbeitshypothese wird durch experimentelle Befunde anderer Autoren gestützt, die mit den Methoden der negativen Kontrastierung, der Licht- und Röntgenstrahl-Kleinwinkel-Beugung experimentierten.

Es wird versucht, für einige elektronenmikroskopische Aufnahmen von Dünnschnitten und Gefrierätzabdrucken eine gemeinsame Deutung zu geben (Rosenkranz et al., 1969; Rosenkranz, 1969a).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Afzelius, B. A.: Chemical fixatives for electron microscopy. In: Harris, R. J. C. (ed.), The Interpretation of Ultrastructure, p. 1–19. New York and London: Academic Press 1962.

    Google Scholar 

  • Bahr, G. F.: Osmium tetroxide and ruthenium tetroxide and their reactions with biologically important substances. Exp. Cell Res. 7, 457–479 (1954).

    Google Scholar 

  • —: Continued studies about the fixation with osmium tetroxide. Exp. Cell Res. 9, 277–285 (1955).

    Google Scholar 

  • Bangham, A. D.: Physical structure and behavior of lipids and lipid enzymes. In: Paoletti, R., and D. Kritchevsky (eds.), Advances in Lipid Research. Vol. I, p. 65–104. New York, London: Academic Press 1963.

    Google Scholar 

  • —, Horne, R. W.: Negative staining of phospholipids and their structural modification by surface-active agents as observed in the electron microscope. J. molec. Biol. 8, 660–668 (1964).

    Google Scholar 

  • Blasie, J. K., Dewey, M. M., Blaurock, A. E., Worthington, C. R.: Electron microscope and low-angle X-ray diffraction studies on outer segment membranes from the retina of the frog. J. molec. Biol. 14, 143–152 (1965).

    Google Scholar 

  • —, Worthington, C. R.: Molecular localization of the photopigment in the outer segment membranes of frog retinal receptors. J. Histochem. Cytochem. 14, 789 (1966).

    Google Scholar 

  • —, Worthington, C. R.: Planar liquid-like arrangement of photopigment molecules in frog retinal receptor disk membranes. J. molec. Biol. 39, 417–439 (1969a).

    Google Scholar 

  • —, Dewey, M. M.: Molecular localization of frog retinal receptor photopigment by electron microscopy and low-angle X-ray diffraction. J. molec. Biol. 39, 407–416 (1969b).

    Google Scholar 

  • Blaurock, A. E., Wilkins, M. H. F.: Structure of frog photoreceptor membranes. Nature (Lond.) 223, 906–909 (1969).

    Google Scholar 

  • Bonting, S. L., Bangham, A. D.: On the biochemical mechanism of the visual process. Exp. Eye Res. 6, 400–413 (1967).

    Google Scholar 

  • Born, M., Wolf, E.: Principles of optics. London, New York, Paris, Los Angeles: Pergamon Press 1959.

    Google Scholar 

  • Borovjagin, V. L.: On the submicroscopical structure of the rods in the frog retina. Biofizika 7, 734–740 (1962). (Russ.)

    Google Scholar 

  • Branton, D.: Fracture faces of frozen membranes. Proc. nat. Acad. Sci. (Wash.) 55, 1048–1056 (1966).

    Google Scholar 

  • Carlo, V. Di, Mendel, L. B.: Membrane ultrastructure: High resolution electron microscopical observations. J. gen. Physiol. 50, 1096–1097 (1967).

    Google Scholar 

  • Chapman, D., Wallach, D. F. H.: Recent physical studies of phospholipids and natural membranes. In: Chapman, D. (ed.), Biological Membranes, p. 125–202. London and New York: Academic Press 1968.

    Google Scholar 

  • Clark, A. W., Branton, D.: Fracture faces in frozen outer segments from the guinea pig retina. Z. Zellforsch. 91, 586–603 (1968).

    Google Scholar 

  • Cope, G. H., Williams, M. A.: Quantitative studies on neutral lipid preservation in electron microscopy. J. roy. micr. Soc. 88, 259–277 (1968).

    Google Scholar 

  • Deenen, L. L. M. van: Phospholipids and biomembranes. In: Holman, R. T. (ed.), The chemistry of fats and other lipids, vol. 8, p. 1–127. Oxford-London-Edinburgh-New York-Paris-Frankfurt: Pergamon Press 1965.

    Google Scholar 

  • Dreher, K. D., Schulman, J. H., Anderson, O. R., Roels, O. A.: The stability and structure of mixed lipid monolayers and bilayers. J. Ultrastruct. Res. 19, 586–599 (1967).

    Google Scholar 

  • Eichberg, J., Hess, H. H.: The lipid composition of frog retinal rod outer segments. Experientia (Basel) 23, 993–994 (1967).

    Google Scholar 

  • Falk, G., Fatt, P.: Distinctive properties of the lamellar and disk-edge structures of the rod outer segment. J. Ultrastruct. Res. 28, 41–60 (1969).

    Google Scholar 

  • Fernández-Morán, H.: Fine structure of biological lamellar systems. Rev. Mod. Phys. 31, 319–330 (1959).

    Google Scholar 

  • —: The fine structure of vertebrate and invertebrate photoreceptors as revealed by low-temperature electron microscopy. In: Smelser, G. K. (ed.), The structure of the eye, S. 521–556. New York and London: Academic Press 1961.

    Google Scholar 

  • —: Cell-membrane ultrastructure. Circulation 26, 1039–1065 (1962).

    Google Scholar 

  • —, Finean, J. B.: Electron microscope and low-angle X-ray diffraction studies of the nerve myelin sheath. J. biophysic. biochem. Cytol. 3, 725–748 (1957).

    Google Scholar 

  • Finean, J. B.: Engström-Finean, Biological ultrastructure, 2nd edition. New York and London: Academic Press 1967.

    Google Scholar 

  • Frey-Wyssling, A.: Submicroscopic morphology of protoplasm, 2nd Engl. Ed. Amsterdam-Houston-London-New York: Elsevier Publishing Company 1953.

    Google Scholar 

  • Giesbrecht, P.: Über die Tertiärstruktur der DNS in den Chromosomen lebender Zellen. Z. Naturforsch. 20b, 927–928a (1965).

    Google Scholar 

  • —, Drews, G.: Über die Organisation und die makromolekulare Architektur der Thylakoide „lebender“ Bakterien. Arch. Mikrobiol. 54, 297–330 (1966).

    Google Scholar 

  • Glaeser, R. M., Hayes, T., Mel, H., Tobias, C.: Membrane structure of OsO4-fixed erythrocytes viewed “face on” by electron microscope techniques. Exp. Cell Res. 42, 467–477 (1966).

    Google Scholar 

  • Heller, J.: Comparative study of a membrane protein. Characterization of bovine, rat, and frog visual pigments500. Biochemistry (Wash.) 8, 675–679 (1969).

    Google Scholar 

  • Hosemann, R., Bagchi, S. N.: Direct analysis of diffraction by matter. Amsterdam: North-Holland Publishing Company 1962.

    Google Scholar 

  • Hubbard, R.: The molecular weight of rhodopsin and the nature of the rhodopsin-digitonin complex. J. gen. Physiol. 37, 381–399 (1954).

    Google Scholar 

  • Jong, D. W. de, Olson, A. C., Jansen, E. F.: Glutaraldehyde activation of nuclear acid phosphatase in cultured plant cells. Science 155, 1672–1674 (1967).

    Google Scholar 

  • Koehler, J. K.: A cell membrane-associated specialization of nucleated erythrocytes as revealed by freeze-etching. J. Cell Biol. 35, 71A (1967). (Abstracts of papers).

  • Kölliker, A.: Zur Anatomie und Physiologie der Retina. Verhandl. Physical.-Medicin. Ges. Würzburg 3, 316–336 (1852).

    Google Scholar 

  • Korn, E. D.: Structure of biological membranes. Science 153, 1491–1498 (1966).

    Google Scholar 

  • —: Current concepts of membrane structure and function. Fed. Proc. 28, 6–11 (1969a).

    Google Scholar 

  • —: Biological membranes. In: Cole, A. (ed.), Theoretical and experimental biophysics, vol. 2, p. 1–67. New York and London: M. Dekker 1969b.

    Google Scholar 

  • Lenard, J., Singer, S. J.: Alteration of the conformation of proteins in red blood cell membranes and in solution by fixatives used in electron microscopy. J. Cell Biol. 37, 117–121 (1968).

    Google Scholar 

  • Lucy, J. A., Glauert, A. M.: Structure and Assembly of macromolecular lipid complexes composed of globular micelles. J. molec. Biol. 8, 727–748 (1964).

    Google Scholar 

  • Luzzati, V., Husson, F.: The structure of the liquid-crystalline phases of lipid-water systems. J. Cell Biol. 12, 207–219 (1962).

    Google Scholar 

  • Moody, M. F., Robertson, J. D.: The fine structure of some retinal photoreceptors. J. biophysic. biochem. Cytol. 7, 87–91 (1960).

    Google Scholar 

  • Moor, H.: Platin-Kohle-Abdruck-Technik angewandt auf den Feinbau der Milchröhren. J. Ultrastruct. Res. 2, 393–422 (1959).

    Google Scholar 

  • —: Die Gefrier-Fixation lebender Zellen und ihre Anwendung in der Elektronenmikroskopie. Z. Zellforsch. 62, 546–580 (1964).

    Google Scholar 

  • —: Durchführung der Gefrierätzung und Interpretation der Resultate betreffend Oberflächenstrukturen von Membranen und Feinbau von Mikrotubuli und Spindelfasern. Balzers Hochvakuum-Fachbericht 9, 1–12 (1967).

    Google Scholar 

  • Mühlethaler, K., Moor, H., Szarkowski, J. W.: The ultrastructure of the chloroplast lamellae. Planta (Berl.) 67, 305–323 (1965).

    Google Scholar 

  • Müller, H.: Bemerkungen über den Bau und die Function der Retina. Verh. Physicalisch-Medicinischen Ges. Würzburg 3, 336–340 (1852).

    Google Scholar 

  • Nanninga, N.: Preservation of the ultrastructure of Bacillus subtilis by chemical fixation as verified by freeze-etching. J. Cell Biol. 42, 733–744 (1969).

    Google Scholar 

  • Nilsson, S. E. G.: The ultrastructure of the receptor outer segments in the retina of the leopard frog (Rana pipiens). J. Ultrastruct. Res. 12, 207–231 (1965).

    Google Scholar 

  • —: The ultrastructure of photoreceptor cells. Preprint of the international school of physics “Enrico Fermi” XLIII course: Processing of optical data by organisms and by machines. Varenna, Lake of Como: 1968.

    Google Scholar 

  • Pedler, C.M. H., Tilly, R.: The fine structure of photoreceptor discs. Vision Res. 7, 829–836 (1967).

    Google Scholar 

  • Reimer, L.: Elektronenmikroskopische Untersuchungs- und Präparationsmethoden, 2. Auflage. Berlin-Heidelberg-New York: Springer 1967.

    Google Scholar 

  • Richardson, S. H., Hultin, H. O., Green, D. E.: Structural proteins of membrane systems. Proc. nat. Acad. Sci. (Wash.) 50, 821–827 (1963).

    Google Scholar 

  • Riemersma, J. C., Booij, H. L.: The reaction of osmium tetroxide with lecithin: Application of staining procedures. J. Histochem. Cytochem. 10, 89–95 (1962).

    Google Scholar 

  • Rivers, T. M.: Effect of repeated freezing (−185° C) and thawing on colon bacilli, virus III, vaccine virus, herpes virus, bacteriophage, complement, and trypsin. J. exp. Med. 45, 11–21 (1927).

    Google Scholar 

  • Robertson, J. D.: Design principles of the unit membrane. In: Wolstenholme, G. E. W., and O'Connor, M. (eds.), Ciba Foundation symposium on Principles of Biomolecular Organizations, p. 357–408. London: J. and A. Churchill Ltd. 1966a.

    Google Scholar 

  • —: Granulo-fibrillar and globular substructure in unit membranes. Ann. N. Y. Acad. Sci. 137, 421–440 (1966b).

    Google Scholar 

  • —: The organization of cellular membranes. In: Allen, J. M. (ed.), Molecular organization and biological function, p. 65–106. New York-Evanston-London: Harper and Row, Publishers 1967.

    Google Scholar 

  • Rosenkranz, J.: A working hypothesis concerning the fine structure of the rod outer segment in the frog retina. Z. Naturforsch. 24b, 1357–1358 (1969a).

    Google Scholar 

  • - Der Feinbau der Stäbchenaußenglieder des Frosches. Dissertation, T. H. Aachen 1969 b.

  • —, Stieve, H.: Frog rod outer segments, investigated by the freeze-etching technique. Z. Naturforsch. 24b, 1356–1356a (1969).

    Google Scholar 

  • Sachs, L.: Statistische Auswertungsmethoden. Berlin-Heidelberg-New York: Springer 1968.

    Google Scholar 

  • Schmidt, W. J.: Doppelbrechung, Dichroismus und Feinbau des Außengliedes der Sehzellen vom Frosch. Z. Zellforsch. 22, 485–522 (1935).

    Google Scholar 

  • —: Der Einfluß von Kaliumpermanganat auf die Doppelbrechung der Markscheide der Nervenfasern und der Außenglieder der Sehzellen. Z. Zellforsch. 23, 261–269 (1936).

    Google Scholar 

  • —: Polarisationsoptische Analyse der Verknüpfung von Protein- und Lipoidmolekeln, erläutert am Außenglied der Sehzellen der Wirbeltiere. Pubblicazioni della Stazione Zoologica di Napoli 23 Suppl. 158–183 (1951).

    Google Scholar 

  • Siemens Meßtechnik: Siemens-Elektronen-Mikroskope, Elmiskop I, Strahlspannung 40... 100kV. Teil I Grundlagen. Berlin: Siemens & Halske AG, Wernerwerk für Meßtechnik (o.J.a.).

  • - Siemens-Elektronen-Mikroskope, Elmiskop I, Strahlspannung 40... 100 kV.Teil III, Bedienung. Berlin: Siemens & Halske AG, Wernerwerk für Meßtechnik (o.J.b.)

  • Sjöstrand, F. S.: An electron microscope study of the retinal rods of the guinea pig eye. J. cell. comp. Physiol. 33, 383–403 (1949).

    Google Scholar 

  • —: A new repeat structural element of mitochondrial and certain cytoplasmic membranes. Nature (Lond.) 199, 1262–1264 (1963).

    Google Scholar 

  • —: Electron microscopy of cells and tissues. New York, London: Academic Press 1967.

    Google Scholar 

  • —: Ultrastructure and function of cellular membranes. In: Dalton, A. J. and Haguenau, F. (eds.), The Membranes, p. 151–210. New York and London: Academic Press 1968.

    Google Scholar 

  • Stange, K., Henning, H.-J.: Graf, Henning, Stange, Formeln und Tabellen der mathematischen Statistik, 2. Aufl. Berlin-Heidelberg-New York: Springer 1966.

    Google Scholar 

  • Steere, R. L.: Electron microscopy of structural detail in frozen biological specimens. J. biophys. biochem. Cytol. 3, 45–60 (1957).

    Google Scholar 

  • Stoeckenius, W.: Some electron microscopical observations on liquid-crystalline phases in lipid-water systems. J. Cell Biol. 12, 221–229 (1962).

    Google Scholar 

  • —: Die molekulare Struktur biologischer Membranen. Ber. der Bunsenges. 71, 758–765 (1967a).

    Google Scholar 

  • —: Electron microscopy of fixed lipids. Protoplasma (Wien) 63, 214–217 (1967b).

    Google Scholar 

  • Wald, G., Brown, P. K., Gibbons, I. R.: Visual excitation: A chemo-anatomical study. In: Beament, J. W. L. (ed.), Biological receptor mechanisms p. 32–57. Symposia of the society for experimental biology, Nr. 16. Cambridge: At the University Press 1962.

    Google Scholar 

  • Weber, E.: Grundriß der biologischen Statistik, 6. Aufl. Stuttgart: G. Fischer Verlag 1967.

    Google Scholar 

  • Wiener, O.: Die Theorie des Mischkörpers für das Feld der stationären Strömung. Erste Abhandlung: Die Mittelwertsätze für Kraft, Polarisation und Energie. Abhandlungen d. Mathem.-Physischen Klasse d. königlich Sachs. Ges. d. Wissenschaften 32, 507–604 (1912).

    Google Scholar 

  • Wolken, J. J.: Studies of photoreceptor structures. Ann. N. Y. Acad. Sci. 74, 164–181 (1958–1959).

    Google Scholar 

  • —: A structural model for a retinal rod. In: Smelser, G. K. (ed.), The structure of the eye, p. 173–192. New York and London: Academic Press 1961.

    Google Scholar 

  • —: Vision. Springfield, Ill., USA: C. C. Thomas, Publisher 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

I wish to thank Prof. Dr. H. Stieve for the interest he took in this work through critical discussions and financial support. I also wish to thank Prof. A. Ruthmann, Ph. D., for introducing me to electron microscopy and for his linguistic aid. That Prof. Dr. K. Mühlethaler, ETH Zürich, and Prof. Dr. F. Schwanitz, KFA Jülich, put their freeze-etching apparatus and electron microscope at my disposal is gratefully acknowledged. The technical assistance of Miss M. Deichmann is also acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosenkranz, J. On the fine structure of the frog's rod outer segments, observed by the freeze-etching technique. Z. Zellforsch. 111, 228–262 (1970). https://doi.org/10.1007/BF00339787

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00339787

Key-Words

Navigation