Skip to main content
Log in

Elektronenmikroskopische Untersuchungen an der Perikaryenschicht der Corpora pedunculata der Waldameise (Formica lugubris Zett.) Mit besonderer Berücksichtigung der Neuron-Glia-Beziehung

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

  1. 1.

    The supraoesophageal ganglion of a common wood ant species (Formica lugubris Zett.) is separated from the fat and glycogen containing extracerebral tissue by a sheath consisting of a cell-free neural lamella and a layer of perilemma cells.

  2. 2.

    The neurons of the corpora pedunculata form a superficial cortical layer consisting of small perikarya (5–15 μ in diameter), which are assembled in epithelial fashion. They give rise to only one single process (axon) and receive neither dendritic nor axonic synapses. The perikarya contain a relatively poorly differentiated endoplasmic reticulum, yet an abundance of ribosomes preponderantly not organized within a typical ergastoplasmic assembly. Two types of inclusion bodies have been found which seem to be common stock of insect neuronal cytoplasm.

  3. 3.

    The glial cells form a complex mesh of processes surrounding the neurons of the cortical layer. Relatively few cell bodies, outnumbered 10–50 times by the neurons, develop a stupendous surface matching the one of neuronal perikarya. The inner structure is characterized by an electron dense cytoplasm (denser than that of neurons), high content in ribosomes and glycogen granules, occasional gliosomes and a dense, lobated nucleus. The Golgi apparatus of glial cells is less well developed than that of neurons.

  4. 4.

    The neuroglial processes reach within the glycogen packed perilemma cell layer and extend from the dorsal to the ventral surface of the cortex. Its marked glycogen content suggests that the neuroglia forms a link in glycogen transport from the extracerebral storage tissue via perilemma cells to neurons.

  5. 5.

    The neuroglial processes separate the neurons from the tracheal system throughout. Furthermore, conglomerations of glial endings immediately contact the distal portions of the tracheolar system forming the “tracheolar end organs”. These observations suggest specific glial functions relative to gas exchange and energy metabolism of the neuron.

  6. 6.

    The plasma membranes of glial cells and neurons consist of “unit membranes” of 90 Å diameter. The interstitial space is conspicuously narrow (30 Å) and can be experimentally expanded by means of hypertonic solutions. No decrease in extracellular space was seen with use of hypotonie fixatives. The role of interstitial space and the interposed meshwork of glial cytoplasm for the mechanism of polarisation and depolarisation of the neuron plasmalemma is discussed in the light of current theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Ashhurst, D. E., and J. A. Chapman: An electron microscopy study of the cytoplasmic inclusion in the neurons of Locustra migratoria. Quart. J. micr. Sci. 103, 147–153 (1962).

    Google Scholar 

  • Buchholz, Ch.: Elektronenmikroskopische Befunde am bestrahlten Oberschlundganglion der Odonaten-Larve (Colopteryx splendens Haar.). Z. Zellforsch. 63, 1–21 (1964).

    Google Scholar 

  • Cajal, S. R., y D. Sánchez: Contribution al conociemento de los centreos nerviosos de los insectos. Trab. Lab. invest. biol. 13, 1–164 (1915) (Abb. 77).

    Google Scholar 

  • Coelho, R. R., J. W. Goodman, and M. B. Bowers: Chemical studies of the satellite cells of the squid giant nerve fiber. Exp. Cell Res. 20, 1–11 (1960).

    Google Scholar 

  • Coggeshall, R. E., and D. W. Fawcett: The fine structure of the central nervous system of the leech, Hirudo medicinalis. J. Neurophysiol. 27, 227–289 (1964).

    Google Scholar 

  • Dalton, A. J.: A chrome osmium fixative for eletron microscopy. Anat. Rec. 121, 281 (1955).

    Google Scholar 

  • Daniels, F., J. H. Mathews, and J. W. Williams: Experimental physical chemistry, 3rd ed. New York: McGraw-Hill Book Co. 1941.

    Google Scholar 

  • David, G. B.: Cytoplasmic networks in neurons; in D. Richter ed.: Comparative neuro-chemistry. Proc. 5th internat. neurochem. symp. Oxford: Pergamon Press 1964.

    Google Scholar 

  • De Robertis, E. D. P., W. W. Nowinski, and F. A. Saez: General Cytology, 3rd ed. Philadelphia: W. B. Saunders Co. 1960.

    Google Scholar 

  • Eichner, D., u. H. Themann: Zur Frage des Netzhautglycogens beim Meerschweinchen. Z. Zellforsch. 56, 231–246 (1962).

    Google Scholar 

  • Fernández-Morán, H., T. Oda, P. V. Blair, and D. E. Green: A macromolecular repeating unit of mitochondrial structure and function. J. Cell Biol. 22, 63–100 (1964).

    Google Scholar 

  • Galambos, R.: A glia-neural theory of brain function. Proc. nat. Acad. Sci. (Wash.) 47, 129–136 (1961).

    Google Scholar 

  • Gaudecker, B. v.: Ueber den Formwechsel einiger Zellorganelle bei der Bildung der Reservestoffe im Fettkörper von Drosophila-Larven. Z. Zellforsch. 61, 56–95 (1963).

    Google Scholar 

  • Gerschenfeld, H. M.: Submicroscopic bases of synaptic organization in gastropod nervous system. In: S. S. Breese (ed.), 5th Internat. Congr. for Electron Microscopy. New York: Academic Press 1962.

    Google Scholar 

  • Gray, E. G.: Electron microscopy of collagen-like connective tissue fibrils of an insect. Proc. roy. Soc. B. 150, 233–239 (1959).

    Google Scholar 

  • —, and R. W. Guillery: An electron microscopical study of the ventral nerve cord of the leech. Z. Zellforsch. 60, 826–849 (1963).

    Google Scholar 

  • —, and J. Z. Young: Electron microscopy of synaptic structure of octopus brain. J. Cell Biol. 21, 87–103 (1964).

    Google Scholar 

  • —, and V. P. Whittaker: The isolation of nerve endings from brain. An electron-microscopic study of cell fragmentes derived by homogenization and centrifugation. J. Anat. (Lond.) 96, 79–88 (1962).

    Google Scholar 

  • Haller, B.: Ueber den allgemeinen Bauplan des Tracheatensyncerebrums. Arch. mikr. Anat. 65, 181–279 (1905).

    Google Scholar 

  • Hama, K.: Some observations on the fine structure of the giant nerve fibers of the eartworm Eisenia foetida. J. biophys. biochem. Cytol. 6, 61–66 (1959).

    Google Scholar 

  • Hamberger, A.: Difference between isolated neuronal and vascular glia with respect to respiratory activity. Acta physiol. scand. 58, Suppl. 203 (1963).

  • —, and H. Hydén: Inverse enzymatic changes in neurons and glia during increased function and hypoxia. J. Cell Biol. 16, 521–525 (1963).

    Google Scholar 

  • Hanström, B.: Vergleichende Anatomie des Nervensystems der wirbellosen Tiere. Berlin: Springer 1928.

    Google Scholar 

  • Harreveld, A. van, and J. P. Schadé: On the distribution and movements of water and electrolytes in the cerebral cortex. In: D. B. Tower and J. P. Schadé (eds.), Structure and function of the cerebral cortex. Proc. 2nd internat. meeting of neurobiologists. Amsterdam: Elsevier Publ. Co. 1960.

    Google Scholar 

  • Hess, A.: The fine structure of nerve cells and fibers, neuroglia and sheaths of the ganglion chain in the cockroach. J. biophys. biochem. Cytol. 4, 731–742 (1958).

    Google Scholar 

  • Hilton, W. A.: The structure of the nerve cells of an insect. J. comp. Neurol. 21, 373–381 (1911).

    Google Scholar 

  • Horridge, G. A., and R. A. Chapman: Sheaths of the motor axons of crab Carcinus. Quart. J. micr. Sci. 105, 175–181 (1964).

    Google Scholar 

  • Horstmann, E., u. H. Meves: Die Feinstruktur des molekularen Rindengraus und ihre physiologische Bedeutung. Z. Zellforsch. 49, 569–604 (1959).

    Google Scholar 

  • Hydén, H.: A microchemical study of the relationship between glia and nerve cells. In: D. B. Tower and J. P. Schadé (eds.), Structure and funcrtion of the ceebral cortex. Proc. 2nd internat. meeting of neurobiologists. Amsterdam: Elsevier Publ. Co. 1960.

    Google Scholar 

  • —: Biochemical and functional interplay between neurons and glia. In: J. Wortis (ed.) Recent advances in biological psychiatry, vol. VI. New York: Plenum Press 1964.

    Google Scholar 

  • —, and E. Egyházi: Glial RNA changes during a learning experiment in rats. Proc. nat. Acad. Sci. (Wash.) 49, 618–624 (1963).

    Google Scholar 

  • —, and P. Lange: Differences in the metabolism of oligodendroglia and nerve cells in the vestibular area. In: S. S. Kety and J. Elkes (eds). Regional Neurochemistry. Proc. 4th internat. Neurochem. Symp. Oxford: Pergamon Press 1961.

    Google Scholar 

  • Karnovsky, M. J.: Simple methods for “staining with” lead at high pH in electron microscopy. J. biophys. biochem. Cytol. 11, 729–732 (1961).

    Google Scholar 

  • Kenyon, F. C.: The meaning and strucure of the so-called „mushroom bodies“ of the hexapod brain. Amer. Naturalist 30, 643–650 (1896).

    Google Scholar 

  • Kutter, H.: Bericht über die Sammelaktion schweizerischer Waldameisen der Formica-Rufa-Gruppe 1960/61. Waldhygiene 4, 193–202 (1962).

    Google Scholar 

  • Leuthardt, F.: Lehrbuch der physiologischen Chemie, 14. Aufl. Berlin: W. de Gruyter & Co. 1959.

    Google Scholar 

  • Loos, H. van der: Fine structure of synapses in the cerebral cortex. Z. Zellforsch. 60, 815–825 (1963).

    Google Scholar 

  • Luft, J. H.: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol. 9, 409–414 (1961).

    Google Scholar 

  • Merrillees, N. C. R., G. Burnstock, and M. E. Holman: Correlation of fine structure and physiology of the innervation of smooth muscle in the guinea pig vas deferens. J. Cell Biol. 19, 529–550 (1963).

    Google Scholar 

  • Millington, P. F.: Comparison of the thickness of the lateral wall membrane and the microvillus membrane of intestinal epithelial cells from rat and mouse. J. Cell Biol. 20, 514–517 (1964).

    Google Scholar 

  • Oksche, A.: Der histochemisch nachweisbare Glycogenaufbau und Abbau in den Astrocyten und Ependymzellen als Beispiel einer funktionsabhängigen Stoffwechselaktivität der Neuroglia. Z. Zellforsch. 54, 307–361 (1961).

    Google Scholar 

  • Palay, S. L., S. M. McGee-Russell, S. Gordon, and M. A. Grillo: Fixation of neural tissues for electron microscopy by perfusion with solutions of osmium tetroxide. J. Cell Biol. 12, 385–410 (1962).

    Google Scholar 

  • —, and G.E. Palade: The fine structure of neurons. J. biophys. biochem. Cytol. 1, 69–88 (1955).

    Google Scholar 

  • Pipa, R. L.: Studies on the hexapod nervous system III. Histology and histochemistry of cockroach neuroglia. J. comp. Neurol. 116, 15–26 (1961a).

    Google Scholar 

  • —: Studies on the hexapod nervous system IV. A cytological and cytochemical study of neurons and their inclusions in the brain of the cockroach, Periplaneta americana L. Biol. Bull. 121, 521–534 (1961b).

    Google Scholar 

  • —: A cytochemical study of neurosecretory and other neuroplasmic inclusions in Periplaneta americana. Gen comp. Endocrin. 2, 44–52 (1962).

    Google Scholar 

  • —, R. S. Nishioka and H. A. Bern: Studies on the hexapod nervous systems. V. The ultra-structure of cockroach gliosomes. J. Ultrastruct. Res. 6, 164–170 (1962).

    Google Scholar 

  • Revel, J. P., L. Napolitano, and D. W. Fawcett: Identification of glycogen in electron micrographs of thin tissue sections. J. biophys. biochem. Cytol. 8, 575–589 (1960).

    Google Scholar 

  • Robertson, J. D.: Structural alterations in nerve fibers produced by hypotonic and hypertonic solutions. J. biophys biochem. Cytol. 4, 349–364 (1958).

    Google Scholar 

  • —: Ultrastructure of cell membranes and their derivatives. Biochem. Soc. Symp. 16, 3–43 (1959).

    Google Scholar 

  • —: Ultrastructure of excitable membranes and the crayfish median-giant synapse. Ann. N. Y. Acad. Sci. 94, 339–389 (1961).

    Google Scholar 

  • —: The occurrence of a subunit pattern in the unit membranes of club endings in Mauthner cell synapses in goldfish brain. J. Cell Biol. 19 201–221 (1963).

    Google Scholar 

  • —: Unit membranes: A review with recent new studies of experimental alterations and a new subunit structure in synaptic membranes. In: M. Locke, (ed.), Cellular membranes in Development. New York: Academic Press 1964.

    Google Scholar 

  • Roeder, K. D.: Insect physiology. New York: John Wiley & Sons 1956.

    Google Scholar 

  • Rosenbluth, J.: The visceral ganglion of Aplysia califonrnica. Z. Zellforsch. 60, 213–236 (1963).

    Google Scholar 

  • Ross, L. S., and R. R. Tassell: Tracheation of grasshopper nerve ganglia. J. comp. Neurol. 52, 347–352 (1931).

    Google Scholar 

  • Schadé, J. P., and H. Collewijn: Neurobiological studies on cephalopods: I. Spreading depression and impedance changes in the retina. Neth. J. Sea Res. 2, 123–144 (1964).

    Google Scholar 

  • Scharrer, B.: The differentiation between neuroglia and connective tissue sheath in the cockroach (Periplaneta americana). J. comp. Neurol. 70, 77–88 (1939).

    Google Scholar 

  • —: Neurosecretion XIII. The ultrastructure of the corpus cardiacum of the insect Leucophaea maderae. Z. Zellforsch. 60, 761–796 (1963).

    Google Scholar 

  • Schlote, F.-W., u. W. Hanneforth: Endoplasmische Membransysteme und Granatypen in Neuronen und Gliazellen von Gastropodennerven. Z. Zellforsch. 60, 872–892 (1963).

    Google Scholar 

  • Schmitt, F. O.: Diskussion zu K. Porter: Other membrane-limited structures of cells. In: S. R. Korey (eds.), The biology of myelin. New York: Hoeber-Harper 1959.

    Google Scholar 

  • Sedar, A. W., and J. G. Forte: Effects of calcium depletion on the junctional complex between oxyntic cells of gastric glands. J. Cell Biol. 22, 173–188 (1964).

    Google Scholar 

  • Sjöstrand, F. S.: Critical evaluation on ultrastructural patterns with respect to fixation. In: R. J. C. Harris (ed.), The interpretation of ultrastructure. 1st Symp. internat. Soc. Cell Biol. New York: Academic Press 1962.

    Google Scholar 

  • —, and L.-G. Elfvin: The granular structure of mitochondrial membranes and of cytomembranes as demonstrated in frozen-dried tissue. J. Ultrastruct. Res. 10, 263–292 (1964).

    Google Scholar 

  • Smith, D. S., and J. E. Treherne: Functional aspects of the organization of the insect nervous system. In: J. W. L. Beament, J. E. Treherne, and V. B. Wigglesworth, (eds.), Advances in insect physiology I. New York: Academic Press 1963.

    Google Scholar 

  • Staubesand, J., B. Kuhlo u. K. H. Kersting: Licht- und elektronenmikroskopische Studien am Nervensystem des Regenwurms. I. Mitteilung: Die Hüllen des Bauchmarkes. Z. Zellforsch. 61, 401–433 (1963).

    Google Scholar 

  • Trujillo-Cenóz, O.: Study on the fine structure of the central nervous system of Pholus labruscae L. Z. Zellforsch. 49, 432–446 (1959).

    Google Scholar 

  • —: Some aspects of the structural organization of the arthropod ganglia. Z. Zellforsch. 56, 649–682 (1962).

    Google Scholar 

  • —, and J. Melamed: Electron microscope observations on the calyces of the insect brain. J. Ultrastruct. Res. 7, 389–398 (1962).

    Google Scholar 

  • Villegas, G. M., and R. Villegas: Neuron-glia relationship in the bipolar cell layer of the fish retina. J. Ultrastruct. Res. 8, 89–106 (1963a).

    Google Scholar 

  • —: Morphogenesis of the Schwann channels in the squid nerve. J. Ultrastruct. Res. 8, 197–205 (1963b).

    Google Scholar 

  • Watson, M. L.: Staining of tissue sections for electron microscopy with heavy metals. J. biophys. biochem. Cytol. 4, 475–478 (1958).

    Google Scholar 

  • Whittaker, V. P.: The separation of subcellular structures from brain tissue. Biochem. Soc. Symp. 26, 109–126 (1963).

    Google Scholar 

  • Wigglesworth, V. B.: The role of perineurium and glial cells in the mobilization of reserves. J. exp. Biol. 37, 500–512 (1960).

    Google Scholar 

  • Yamamoto, T.: On the thickness of the unit membrane. J. Cell Biol. 17, 413–421 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Die Arbeit wurde durch einen Kredit (Nr. 2575) des Schweizerischen Nationalfonds für Wissenschaftliche Forschung unterstützt.

Frl. C. Sandri sei für ihre unentbehrliche, technische Mitarbeit an dieser Stelle der beste Dank ausgesprochen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Landolt, A.M. Elektronenmikroskopische Untersuchungen an der Perikaryenschicht der Corpora pedunculata der Waldameise (Formica lugubris Zett.) Mit besonderer Berücksichtigung der Neuron-Glia-Beziehung. Zeitschrift für Zellforschung 66, 701–736 (1965). https://doi.org/10.1007/BF00339254

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00339254

Navigation