Skip to main content
Log in

Uptake of radioactive thymidine and cytidine by Ehrlich ascites tumor cells in different stages of growth

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

In Strong A female mice, the Ehrlich ascites tumor inoculated into the peritoneal cavity grows exponentially for the first 7 days with a doubling time of about 36 hours. The tumor enters then into a late stage during which the number of tumor cells in the peritoneal cavity does not increase. The uptake of intraperitoneally injected thymidine decreases from the exponential to the late stage, mostly because of a decrease in the fraction of cells in DNA synthesis. During the exponential phase, the uptake of thymidine is a function of the amount of radioactive thymidine injected per tumor cell, the utilization decreasing with increasing cell dose. The uptake of intraperitoneally injected cytidine decreases slightly with time after inoculation although the fraction of tumor cells in RNA synthesis remains constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert, S., R. M. Johnson, and M. S. Cohan: Phosphorus metabolism in resting and pregnancy-stimulated mammary glands and in spontaneous mammary carcinomas of mice. Cancer Res. 11, 772–776 (1951).

    PubMed  Google Scholar 

  • Baserga, R.: A study of nucleic acid synthesis in ascites tumor cells by two emulsion radioautography. J. Cell Biol. 12, 633–637 (1962).

    Article  PubMed  Google Scholar 

  • —: Mitotic cycle of ascites tumor cells. Arch. Path. 75, 156–161 (1963).

    PubMed  Google Scholar 

  • —, and W. E. Kisieleski: Comparative studies of the kinetics of cellular proliferation of normal and tumorous tissues with the use of tritiated thymidine. I. Dilution of the label and migration of labeled cells. J. nat. Cancer Inst. 28, 331–339 (1962).

    PubMed  Google Scholar 

  • —, and W. E. Kisieleski: Re-utilization of labeled DNA by Ehrlich ascites tumor cells. Arch. ital. Pat. Clin. Tumori 6, 3–13 (1963).

    Google Scholar 

  • —, and E. Lisco: Duration of DNA synthesis in Ehrlich ascites cells as estimated by double-labeling with C14- and H3-thymidine and autoradiography. J. nat. Cancer Inst. 31, 1559–1571 (1963).

    PubMed  Google Scholar 

  • —, and K. Nemeroff: The use of standard slides in semiquantitative radioautography with tritiated compounds. Stain Technol. 38, 111–116 (1963).

    PubMed  Google Scholar 

  • —, S. A. Tyler, and W. E. Kisieleski: The kinetics of growth of the Ehrlich tumor. Arch. Path. 76, 9–13 (1963).

    PubMed  Google Scholar 

  • Colter, J. S., R. A. Brown, and K. A. O. Ellem: Observations on the use of phenol for the isolation of deoxyribonucleic acid. Biochim. biophys. Acta (Amst.) 55, 31–39 (1962).

    Article  Google Scholar 

  • Defendi, V., and L. A. Manson: Analysis of the life-cycle in mammalian cells. Nature (Lond.) 198, 359–361 (1963).

    Google Scholar 

  • Edwards, J. L., A. L. Koch, P. Youcis, H. L. Freese, M. B. Laite, and J. T. Donalson: Some characteristics of DNA synthesis and the mitotic cycle in Ehrlich ascites tumor cells. J. biophys. biochem. Cytol. 7, 273–282 (1960).

    PubMed  Google Scholar 

  • Feinendegen, L. E., V. P. Bond, and R. B. Painter: Studies on the interrelationship of RNA synthesis, DNA synthesis, and precursor pool in human tissue culture cells studied with tritiated pyrimidine nucleosides. Exp. Cell Res. 22, 381–405 (1961).

    PubMed  Google Scholar 

  • Fink, R. M., and K. Fink: Relative retention of H3 and C14 labels of nucleosides incorporated into nucleic acids of Neurospora. J. biol. Chem. 237, 2889–2891 (1962).

    PubMed  Google Scholar 

  • Fitzgerald, P. J., and K. Vinijchaikul: Nucleic acid metabolism of pancreatic cells as revealed by cytidine-H3 and thymidine-H3. Lab. Invest. 8, 319–328 (1959).

    PubMed  Google Scholar 

  • Friedkin, M., D. Tilson, and D. W. Roberts: Studies of deoxyribonucleic acid biosynthesis in embryonic tissues with thymidine-C14. J. biol. Chem. 220, 627–637 (1956).

    PubMed  Google Scholar 

  • Fujioka, M., M. Koga, and I. Lieberman: Metabolism of ribonucleic acid after partial hepatectomy. J. biol. Chem. 238, 3401–3406 (1963).

    PubMed  Google Scholar 

  • Healy, G. M., L. Siminovitch, R. C. Parker, and A. F. Graham: Conservation of desoxyribonucleic acid phosphorus in animal cells propagated in vitro. Biochim. biophys. Acta (Amst.) 20, 425–426 (1956).

    Article  Google Scholar 

  • Howard, A., and S. R. Pelc: Synthesis of desoxyribonucleic acid in normal and irradiated cells and its relation to chromosome breakage. Heredity (Suppl.) 6, 261–273 (1953).

    Google Scholar 

  • Joftes, D. L., and S. Warren: Simplified liquid emulsion radioautography. J. biol. photogr. Ass. 23, 145–150 (1955).

    PubMed  Google Scholar 

  • Johnson, H. A.: Some problems associated with the histological study of cell proliferation kinetics. Cytologia (Tokyo) 26, 32–41 (1961).

    Google Scholar 

  • Kihara, H. K., M. Amano, and A. Sibatani: Stability of deoxypentose nucleic acid in growing and non-growing livers of young rats. Biochim. biophys. Acta (Amst.) 21, 489–499 (1956).

    Article  Google Scholar 

  • Kisieleski, W. E., R. Baserga, and H. Lisco: Tritiated thymidine and the study of tumors. Atompraxis 7, 81–85 (1961).

    PubMed  Google Scholar 

  • Klein, G., and L. Revesz: Quantitative studies on the multiplication of neoplastic cells in vivo. I. Growth curves of the Ehrlich and MClM ascites tumors. J. nat. Cancer Inst. 14, 229–277 (1953).

    PubMed  Google Scholar 

  • Kleinschmidt, W. J.: The composition of ribonucleic acid and deoxyribonucleic acid of normal and neoplastic tissue. Cancer Res. 19, 966–969 (1959).

    PubMed  Google Scholar 

  • Lowry, O. H., N. J. Rosebrough, A. L. Farr, and B. J. Randall: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951).

    PubMed  Google Scholar 

  • Maruyama, Y.: An isotopic method for determination of cell generation time. Nature (Lond.) 198, 1181–1183 (1963).

    Google Scholar 

  • Messier, B., and C. P. Leblond: Preparation of coated radioautographs by dipping sections in fluid emulsion. Proc. Soc. exp. Biol. (N.Y.) 96, 7–10 (1957).

    Google Scholar 

  • Patt, H. M., and R. L. Straube: Measurement and nature of ascites tumor growth. Ann. N.Y. Acad. Sci. 63, 728–736 (1956).

    PubMed  Google Scholar 

  • Petersen, R. O., and R. Baserga: Route of injection and uptake of tritiated precursors. Arch. Path. 77, 582–586 (1964).

    PubMed  Google Scholar 

  • Reichard, P., and B. Estborn: Utilization of desoxyribosides in the synthesis of polynucleotides. J. biol. Chem. 188, 839–846 (1951).

    PubMed  Google Scholar 

  • Revesz, L., A. Forssberg, and G. Klein: Quantitative studies on the multiplication of neoplastic cells in vivo. III. Metabolic stability of deoxypentose nucleic acid and the use of labeled tumor cells for the measurement of growth curves. J. nat. Cancer Inst. 17, 37–47 (1956).

    PubMed  Google Scholar 

  • Scott, J. F., A. P. Fraccastoro, and E. B. Taft: Studies in histochemistry. I. Determination of nucleic acids in microgram amounts of tissue. J. Histochem. Cytochem. 4, 1–10 (1956).

    PubMed  Google Scholar 

  • Stillstrom, J.: Grain count corrections in autoradiography. Int. J. appl. Radiat. 14, 113–118 (1963).

    Article  PubMed  Google Scholar 

  • Taylor, J. H.: Nucleic acid synthesis in relation to the cell division cycle. Ann. N.Y. Acad. Sci. 90, 409–421 (1960).

    PubMed  Google Scholar 

  • Ultman, J. E., E. Hirschberg, and A. Gellhorn: The effect of nitrogen mustard on the cellular concentration of nucleic acids in regenerating rat liver. Cancer Res. 13, 14–20 (1953).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Professor Friedrich Wassermann with admiration and affection on the occasion of his 80th birthday.

This investigation was supported by U.S.P.H.S. Grant CA-05667. The author is a U.S.P.H.S. Research Career Development Awardee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baserga, R. Uptake of radioactive thymidine and cytidine by Ehrlich ascites tumor cells in different stages of growth. Z.Zellforsch 64, 1–12 (1964). https://doi.org/10.1007/BF00339179

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00339179

Keywords

Navigation