Skip to main content
Log in

Biotechnological applications and potentialities of halophilic microorganisms

  • Special Topic Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Halophilic microorganisms are found as normal inhabitants of highly saline environments and thus are considered extremophiles. They are mainly represented, but not exclusively, by the halobacteria (extremely halophilic aerobic Archaea), the moderate halophiles (Bacteria and some methanogens) and several eukaryotic algae. These extremophilic microorganisms are already used for some biotechnological processes, for example halobacteria are used for the production of bacteriorhodopsin, and the alga Dunaliella is used in the commercial production of β-carotene. Several other present or potential applications of halophiles are reviewed, including the production of polymers (polyhydroxyalcanoates and polysaccharides), enzymes, and compatible solutes, and the use of these extremophiles in enhanced oil recovery, cancer detection, drug screening and the biodegradation of residues and toxic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antón, J., García-Lillo, J.A., Meseguer, I. & Rodríguez-Valera, F. 1989 Biopolymer production by Haloferax mediterranei. In General and Applied Aspects of Halophilic Microorganisms, ed Rodríguez-Valera, F. pp. 373–388. New York: Plenum Press.

    Google Scholar 

  • Antón, J., Meseguer, I. & Rodríguez-Valera, F. 1988 Production of an extracellular polysaccharide by Haloferax mediterranei. Applied and Environmental Microbiology 54, 2381–2386.

    Google Scholar 

  • Avron, M. & Ben-Amotz, A. (eds) 1992 Dunaliella: Physiology, Biochemistry, and Biotechnology. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Baas-Becking, L.G.M. 1931 Historical notes on salt and salt manufacture. Science Monthly 32, 434–446.

    Google Scholar 

  • Ben-Amotz, A. & Avron, M. 1990 The biotechnology of cultivating the halotolerant alga Dunaliella. Trends in Biotechnology 8, 121–126.

    Google Scholar 

  • Ben-Mahrez, K., Sorokine, I., Thierry, D., Kawasumi, T., Ishii, S., Salmon, R. & Kohiyama, M. 1991 An archaebacterial antigen used to study immunological humoral response to c-myc onco-gene product. In General and Applied Aspects of Halophilic Microorganisms, ed Rodríguez-Valera, F. pp. 367–372. New York: Plenum Press.

    Google Scholar 

  • Ben-Mahrez, K., Thierry, D., Sorokine, I., Danna-Muller, A. & Kohiyama, M. 1988 Detection of circulating antibodies against c-myc protein in cancer patient sera. British Journal of Cancer 57, 529–534.

    Google Scholar 

  • Bertrand, J.C., Almallah, M., Acquaviva, M. & Mille, G. 1990 Biodegradation of hydrocarbons by an extremely halophilic archaebacterium. Letters in Applied Microbiology 11, 260–263.

    Google Scholar 

  • Brock, T.D. 1979 Ecology of saline lakes. In Strategies of Microbial Life in Extreme Environments, ed Shilo, M. pp. 29–47, Weinheim: Verlag-Chemie.

    Google Scholar 

  • Chen, Z. & Birge, R.R. 1993. Protein-based artificial retinas. Trends in Biotechnology 11, 292–300.

    Google Scholar 

  • Cooper, D.G. 1986 Biosurfactants. Microbiological Sciences 3, 145–149.

    Google Scholar 

  • DasSarma, S. 1993 Identification and analysis of the gas vesicle gene cluster on an unstable plasmid of Halobacterium halobium. Experientia 49, 482–486.

    Google Scholar 

  • DasSarma, S., Damerval, T., Jones, J.G. & Tandeau De Marsac, N. 1987 A plasmid-encoded gas vesicle gene in Halobacterium halobium. Molecular Microbiology 1, 365–370.

    Google Scholar 

  • DeFrank, J. & Cheng, T.-C. 1991 Purification and properties of an organophosphorus acid anhydrase from a halophilic bacterium. Journal of Bacteriology 173, 1938–1943.

    Google Scholar 

  • Dundas, I. 1978 The normal Halobacteriaceae, the general physiology and taxonomy of a well adapted and highly successful group of microorganisms. In Energetics and Structure of Halophilic Microorganisms, eds Caplan, S.R. & Ginzburg, M. pp. 641–651. Amsterdam: Elsevier.

    Google Scholar 

  • Ebert, K., Goebel, W. & Pfeifer, F. 1984 Homologies between heterogeneous extrachromosomal DNA populations of Halobacterium halobium and four new isolates. Molecular and General Genetics 194, 91–97.

    Google Scholar 

  • Elazari-Volcani, B. 1940 Studies on the microflora of the Dead Sea. PhD Thesis. Hebrew University of Jerusalem, Jerusalem.

  • Fernández-Castillo, R., Rodríguez-Valera, F., González-Ramos, J. & Ruíz-Berraquero, F. 1986 Accumulation of poly(β-hydroxybutyric acid) by halobacteria. Applied and Environmental Microbiology 51, 214–216.

    Google Scholar 

  • Fernández-Castillo, R., Vargas, M., Nieto, J.J., Ventosa, A. & Ruíz-Berraquero, F. 1992 Characterization of a plasmid from moderately halophilic eubacteria. Journal of General Microbiology 138, 1133–1137.

    Google Scholar 

  • Forterre, P. 1989 DNA polymerases and topoisomerases in archaebacteria: potential applications. In Microbiology of Extreme Environments and its Potential for Biotechnology, eds Da Costa, M.S., Duarte, J.C. & Williams, R.A.D. pp. 152–158. London: Elsevier Science.

    Google Scholar 

  • Forterre, P., Gadelle, D., Charbonnier, F. & Sioud, M. 1991 DNA topology in halobacteria. In General and Applied Aspects of Halophilic Microorganisms, ed Rodríguez-Valera, F. pp. 333–338. New York: Plenum Press.

    Google Scholar 

  • Galinski, E.A. & Lippert, K. 1991 Novel compatible solutes and their potential application as stabilizers in enzyme technology. In General and Applied Aspects of Halophilic Microorganisms, ed Rodríguez-Valera, F. pp. 351–358. New York: Plenum Press.

    Google Scholar 

  • Galinski, E.A. & Tindall, B.J. 1992 Biotechnological prospects for halophiles and halotolerant micro-organisms. In Molecular Biology and Biotechnology of Extremophiles, eds Herbert, R.D. & Sharp, R.J. pp. 76–114. London: Blackie.

    Google Scholar 

  • Ginzburg, B.Z. 1991 Liquid fuel (oil) from halophilic algae: a renewable source of non-polluting energy. In General and Applied Aspects of Halophilic Microorganisms, ed Rodríguez-Valera, F. pp. 389–395. New York: Plenum Press.

    Google Scholar 

  • González, C. & Gutiérrez, C. 1970 Presence of lipase among species of extremely halophilic bacteria. Canadian Journal of Microbiology 16, 1165–1166.

    Google Scholar 

  • Good, V.A. & Hartman, P.A. 1970 Properties of the amylase from Halobacterium halobium. Journal of Bacteriology 104, 601–603.

    Google Scholar 

  • Hochstein, L.I. 1988 The physiology and metabolism of the extremely halophilic bacteria. In Halophilic Bacteria, ed Rodríguez-Valera, F. pp. 67–83. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Hong, F.T. 1986 The bacteriorhodopsin model membrane system as a prototype molecular computing element. Biosystems 19, 223–236.

    Google Scholar 

  • Hrabak, O. 1992 Industrial production of poly-β-hydroxybutyrate. FEMS Microbiology Reviews 103, 251–256.

    Google Scholar 

  • Izotova, L.S., Strongin, A.Y., Chekulaeva, L.N., Sterkin, V.E., Ostoslavskaya, V.I., Lyublinskaya, L.A., Timokhina, E.A. & Spenavov, V.M. 1983 Purification and properties of serine protease from Halobacterium halobium. Journal of Bacteriology 155, 826–830.

    Google Scholar 

  • Javor, B. 1989 Hypersaline Environments. Microbiology and Biogeochemistry. New York: Springer-Verlag.

    Google Scholar 

  • Kamekura, M. 1986 Production and function of enzymes of eubacterial halophiles. FEMS Microbiology Reviews 39, 145–150.

    Google Scholar 

  • Kamekura, M., Hamakawa, T. & Onishi, H. 1982 Application of halophilic nuclease H of Micrococcus varians subsp. halophilus to commeriial production of flavoring agent 5′-GMP. Applied and Environmental Microbiology 44, 994–995.

    Google Scholar 

  • Keeler, R. 1991 Don't let food go to waste — make plastic out of it. RandD Magazine 33, 52–57.

    Google Scholar 

  • Khire, J.M. & Pant, A. 1992. Thermostable, salt-tolerant amylase from Bacillus sp. 64. World Journal of Microbiology and Biotechnology 8, 167–170.

    Google Scholar 

  • Klebahn, H. 1919 Die schädlings des klippfisches. Ein beitrag zur kenntnis der salzliebenden organismen. Mitteilungen aus dem Institüt für Allgemeine Botanik, Hamburg 4, 11–69.

    Google Scholar 

  • Konig, H. 1988 Archaeobacteria. In Biotechnology, Vol. 6B, eds Rehm, H.J. & Reed, G. pp. 699–728. Weinheim: Verlag Chemie.

    Google Scholar 

  • Kushner, D.J. 1966 Mass culture of red halophilic bacteria. Biotechnology and Bioengineering 8, 237–245.

    Google Scholar 

  • Kushner, D.J. 1978 Life in high salt and solute concentrations: halophilic bacteria. In Microbial Life in Extreme Environments, ed Kushner, D.J. pp. 317–368. London: Academic Press.

    Google Scholar 

  • Kushner, D.J. 1985 The Halobacteriaceae. In The Bacteria, Vol. 8, eds Woese, C.R. & Wolfe, R.S. pp. 171–214. London: Academic Press.

    Google Scholar 

  • Lafferty, R.M., Korsatko, B. & Korsatko, W. 1988 Microbial production of poly-beta-hydroxybutiric acid. In Biotechnology, Vol. 6b, eds Rehm, H.J. & Reed, G. pp. 136–176. Weinheim: Verlag Chemie.

    Google Scholar 

  • Lanyi, J.K. 1974 Salt-dependent properties of proteins from extremely halophilic bacteria. Bacteriological Reviews 38, 272–290.

    Google Scholar 

  • Larsen, H. 1962 Halophilism. In The Bacteria, Vol. 14, eds Gunsalus, I.C. & Stanier, R.Y. pp. 297–342. New York: Academic Press.

    Google Scholar 

  • Leuschner, C. & Antranikian, G. 1995 Heat-stable enzymes from extremely thermophilic and hyperthermophilic microorganisms. World Journal of Microbiology and Biotechnology 11, 94–113.

    Google Scholar 

  • Lillo, J.G. & Rodríguez-Valera. 1990 Effects of culture conditions on poly (beta-hydroxybutyric acid) production by Haloferax mediterranei. Applied and Environmental Microbiology 56, 2517–2521.

    Google Scholar 

  • McMeekin, T.A., Nichols, P.D., Nichols, D.S., Juhasz, A. & Franzmann, P.D. 1993. Biology and biotechnological potential of halotolerant bacteria from Antarctic saline lakes. Experientia 49, 1042–1046.

    Google Scholar 

  • Meseguer, I., Rodríguez-Valera, F. & Ventosa, A. 1986 Antagonistic interactions among halobacteria due to halocin production. FEMS Microbiology Letters 36, 177–182.

    Google Scholar 

  • Nagasawa, H., Fuji, K., Yamamoto, R. & Ben-Amotz, A. 1989 No deleterious side-effects on mammary growth and endocrine parameters of chronic ingestion of beta-carotene-rich alga Dunaliella bardawil in virgin mice in comparison with synthetic all-trans-β-carotene. Cancer Journal 2, 291–298.

    Google Scholar 

  • Nieto, J.J. 1991 The response of halophilic bacteria to heavy metals. In General and Applied Aspects of Halophilic Microorganisms, ed. Rodríguez-Valera, F. pp. 173–179. New York: Plenum Press.

    Google Scholar 

  • Nieto, J.J., Fernández-Castillo, R., García, M.T., Mellado, E., & Ventosa, A. 1993 Survey of antimicrobial susceptibility of moderately halophilic eubacteria and extremely halophilic aerobic archaeobacteria: utilization of antimicrobial resistance as a genetic marker. Systematic and Applied Microbiology 16, 352–360.

    Google Scholar 

  • Nieto, J.J., Fernández-Castillo, R., Márquez, M.C., Ventosa, A., Quesada, E. & Ruíz-Berraquero, F. 1989 Survey of metal tolerance in moderately halophilic eubacteria. Applied and Environmental Microbiology 55, 2385–2390.

    Google Scholar 

  • Nieto, J.J., Ventosa, A. & Ruíz-Berraquero. 1987 Susceptibility of halobacteria to heavy metals. Applied and Environmental Microbiology 53, 1199–1202.

    Google Scholar 

  • Norberg, P. & Hofsten, B.V. 1969 Proteolytic enzymes from extremely halophilic bacteria. Journal of General Microbiology 55, 251–256.

    Google Scholar 

  • Obayashi, A., Hiraoka, N., Kita, K., Nakajima, H. & Shuzo, T. 1988 Process for producing restriction enzymes. US Patent 4, 724, 209, US Cl. 435/199.

  • Ollivier, B., Caumette, P., Garcia, J.L. & Mah, R.A. 1994 Anaerobic bacteria from hypersaline environments. Microbiological Reviews 58, 27–38.

    Google Scholar 

  • Onishi, H., Yokoi, H. & Kamekura, M. 1991 An application of a bioreactor with floculated cells of halophilic Micrococcus varians subsp. halophilus which preferentially adsorbed halophilic nuclease H to 5′-nucleotide production. In General and Applied Aspects of Halophilic Microorganisms, ed Rodríguez-Valera, F. pp. 341–350. New York: Plenum Press.

    Google Scholar 

  • Oren, A. 1983 A thermophilic amyloglucosidase from Halobacterium sodomense, a halophilic bacterium from the Dead Sea. Current Microbiology, 8, 225–230.

    Google Scholar 

  • Oren, A., Guverich, P., Azachi, M. & Henis, Y. 1992 Microbial degradation of pollutants at high salt concentrations. Biodegradation 3, 387–398.

    Google Scholar 

  • Oren, A., Gurevich, P. & Henis, Y. 1991. Reduction of nitrosubstituted aromatic compounds by the halophilic anaerobic eubacteriua Haloanaerobium praevalens and Sporohalobacter marismortui. Applied and Environmental Microbiology 57, 3367–3370.

    Google Scholar 

  • Pfeifer, F. & Englert, C. 1992 Function and biosynthesis of gas vesicles in halophilic Archaea. Journal of Bioenergetics and Biomembranes 24, 577–585.

    Google Scholar 

  • Pfiffner, S.M., McInerney, M.J., Jenneman, G.E. & Knapp, R.M. 1986 Isolation of halotolerant, thermotolerant, facultative polymer-producing bacteria and characterization of the exopolysaccharide. Applied and Environmental Microbiology 51, 1224–1229.

    Google Scholar 

  • Post, F.J. 1977 The microbial ecology of the Great Salt Lake. Microbial Ecology 3, 143–165.

    Google Scholar 

  • Post, F.J. & Al-Harjan, F.A. 1988 Surface activity of halobacteria and potential use in microbially enhanced oil recovery. Systematic and Applied Microbiology 11, 97–101.

    Google Scholar 

  • Post, F.J. & Collins, N.F. 1982 A preliminary investigation of the membrane lipid of Halobacterium halobium as a food additive. Journal of Food Biochemistry 6, 25–38.

    Google Scholar 

  • Prentis, S. 1981 Microbes that capture the sun. New Scientist 101, 159–163.

    Google Scholar 

  • Quesada, E., Béjar, V. & Calvo, C. 1993 Exopolysaccharide production by Volcaniella eurihalina. Experientia 49, 1037–1041.

    Google Scholar 

  • Ramos-Cormenzana, A. 1989 Ecological distribution and biotechnological potential of halophilic microorganisms. In Microbiology of Extreme Environments and its Potential for Biotechnology, eds DaCosta, M.S., Duarte, J.C. & Williams, R.A.D. pp. 289–309. London: Elsevier.

    Google Scholar 

  • Rodríguez-Valera, F. 1988 Characteristics and microbial ecology of hypersaline environments. In Halophilic Bacteria, ed Rodríguez-Valera, F. pp. 3–30. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Rodríguez-Valera, F. 1992 Biotechnological potential of halobacteria. In The Archaebacteria: Biochemistry and Biotechnology, eds Danson, M.J., Hough, D.W. & Lunt, G.G. pp. 135–147. London: Portland Press.

    Google Scholar 

  • Rodríguez-Valera, F., Juez, G. & Kushner, D.J. 1982 Halocins: salt-dependent bacteriocins produced by extremely halophilic rods. Canadian Journal of Microbiology 28, 151–154.

    Google Scholar 

  • Rodríguez-Valera, F., Juez, G. & Kushner, D.J. 1983 Halobacterium mediterranei, spec. nov., a new carbohydrate-utilizing extreme halophile. Systematic and Applied Microbiology 4, 369–381.

    Google Scholar 

  • Rodríguez-Valera, F. & Lillo, J.G. 1992 Halobacteria as producers of polyhydroxyalkanoates. FEMS Microbiology Reviews 103, 181–186.

    Google Scholar 

  • Rodríguez-Valera, F., Ventosa, A., Juez, G. & Imhoff, J.F. 1985 Variation of environmental features and microbial populations with salt concentrations in a multi-pond saltern. Microbial Ecology 11, 107–115.

    Google Scholar 

  • Saisithi, P., Kasemsarn, B., Liston, J. & Dollar, A.M. 1966 Microbiology and chemistry of fermented fish. Journal of Food Science 31 105–110.

    Google Scholar 

  • Schinzel, R. & Burger, K.J. 1986 A site-specific endonuclease activity in Halobacterium halobium. FEMS Microbiology Letters 37, 325–329.

    Google Scholar 

  • Sioud, M., Forterre, P. & De Recondo, A.M. 1987 Effects of the antitumor drug VP16 (etoposide) on the archaebacterial Halobacterium GRB 1.7 kb plasmid in vivo. Nucleic Acids Research 15, 8217–8234.

    Google Scholar 

  • Speelmans, G., Poolman, B. & Konings, W.N. 1995 Na+ as coupling in energy transduction in extremophilic Bacteria and Archaea. World Journal of Microbiology and Biotechnology 11, 57–69.

    Google Scholar 

  • Sutherland, I.W. 1983 Extracellular polysaccharides. In Biotechnology, Vol. 3, ed Dellweg, H. pp. 531–574. Weinheim: Verlag Chemie.

    Google Scholar 

  • Sutherland, I.W. 1986 Industrially useful microbial polysaccharides. Microbiological Sciences 3, 5–8.

    Google Scholar 

  • Thongthai, C., McGeinity, T.J., Suntinanalert, P. & Grant, W.D. 1992 Isolation and characterization of an extremely halophilic archaeobacterium from traditionally fermented Thai fish sauce (nam pla). Letters in Applied Microbiology 14, 11–114.

    Google Scholar 

  • Thongthai, C. & Siriwongpairat, M. 1990 The sequential quantitation of microorganisms in traditionally fermented fish sauce (nam pla). In Post-harvest Technology, Preservation and Quality of Fish in Southeast Asia, eds Reilly, P.J.A., Parry, R.W.H. & Barile, L.E. pp. 51–59. Stockholm: International Foundation for Science.

    Google Scholar 

  • Trevors, J.T., Oddie, K.M. & Belliveau, B.H. 1985 Metal resistance in bacteria. FEMS Microbiology Reviews 32, 39–54.

    Google Scholar 

  • Ventosa, A. 1988 Taxonomy of moderately halophilic heterotrophic eubacteria. In Halophilic Bacteria, ed Rodríguez-Valera, F. pp. 71–84. Boca Raton, FL: CRC Press.

    Google Scholar 

  • Ventosa, A. 1989 Taxonomy of halophilic bacteria. In Microbiology of Extreme Environments and its Potential for Biotechnology, eds DaCosta, M.S., Duarte, J.C. & Williams, R.A.D. pp. 262–279. London: Elsevier.

    Google Scholar 

  • Ventosa, A. 1993 Molecular taxonomy of Gram-positive moderately halophic cocci. Experientia 49, 1055–1058.

    Google Scholar 

  • Ventosa, A., Fernández-Castillo, R., Vargas, M., Mellado, E., García, M.T. & Nieto, J.J. 1994 Isolation and characterization of new plasmids from moderately halophilic eubacteria: developing of cloning vectors. In ECB6: Proceedings of the 6th European Congress on Biotechnology, eds Alberghina, L., Frontali, L. & Sensi, P. pp. 271–274. Amsterdam: Elsevier.

    Google Scholar 

  • Vsevolodov, N.N. & Dyukova, T.V. 1994 Retinal-protein complexes as optoelectronic components. Trends in Biotechnology 12, 81–88.

    Google Scholar 

  • Walsby, A. 1994 Gas vesicles. Microbiological Reviews 58, 94–144.

    Google Scholar 

  • Ward, D.W. & Brock, T.D. 1978 Hydrocarbon biodegradation in hypersaline environments. Applied and Environmental Microbiology 35, 353–359.

    Google Scholar 

  • Woese, C.R. 1987 Bacterial evolution. Microbiological Reviews 51, 221–271.

    Google Scholar 

  • Woese, C.R. & Fox, G.E. 1977 Phylogenetics structure of the prakaryotic domain: the primary kingdoms. Proceedings of the National Academy of Sciences of the United States of America 74, 5088–5090.

    Google Scholar 

  • Woolard, C.R. & Irvine, R.L. 1992 Biological treatment of hypersaline wastewater by a biofilm of halophilic bacteria. In 65th Annual Water Environment Federation Conference. New Orleans.

Download references

Authors

Additional information

The authors are with the Departamento de Microbiología y Parasitología, Universidad de Sevilla, 41012 Sevilla, Spain

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ventosa, A., Nieto, J.J. Biotechnological applications and potentialities of halophilic microorganisms. World Journal of Microbiology & Biotechnology 11, 85–94 (1995). https://doi.org/10.1007/BF00339138

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00339138

Key words

Navigation