Skip to main content
Log in

Only one gene is required for the glpT-dependent transport of sn-glycerol-3-phosphate in Escherichia coli

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Deletion and point mutants defective in the glpT-dependent sn-glycerol-3-phosphate transport system were isolated and located on the Escherichia coli chromosome. They mapped in glpT in the clockwise order gyrA, glpA, glpT at around 48 min on the Escherichia coli linkage map. The mutations within glpT were ordered by deletion mapping, three factor crosses, and by crosses involving λ transducing bacteriophages carrying glpT-lac operon fusions. Results obtained using these fusion phages indicated that glpT is transcribed in the counterclockwise direction on the E. coli linkage map.

Complementation analysis using these mutants revealed only one complementation group. Thus, one gene is necessary and sufficient for the proton motive force-dependent sn-glycerol-3-phosphate transport system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Argast M, Boos W (1980) Co-regulation in Escherichia coli of a novel transport system for sn-glycerol-3-phosphate and outer membrane protein Ic (e, E) with alkaline phosphatase and phosphate-binding protein. J Bacteriol 143:142–150

    Google Scholar 

  • Argast M, Ludtke D, Silhavy TJ, Boos W (1978) A second transport system for sn-glycerol-3-phosphate in Escherichia coli. J Bacteriol 136:1070–1083

    Google Scholar 

  • Bachman BJ, Low KB (1980) Linkage map of Escherichia coli K-12, edition 6. Microbiol Rev 44:1–56

    Google Scholar 

  • Bochner BR, Huang HC, Schieven GL, Ames BN (1980) Positive selection for loss of tetracycline resistance. J Bacteriol 143:926–933

    Google Scholar 

  • Boos W, Hartig-Beecken I, Altendorf K (1977) Purification and properties of periplasmic protein related to sn-glycerol-3-phosphate transport in Escherichia coli. Eur J Biochem 72:571–581

    Google Scholar 

  • Boos W, Steinacher I, Engelhardt-Altendorf D (1982) Mapping of mglB, the structural gene of the galactose-binding protein of Escherichia coli. Mol Gen Genet 184:508–518

    Google Scholar 

  • Büchel DE, Gronenborg B, Müller-Hill B (1980) Sequence of the lactose permease gene. Nature 283:541–545

    Google Scholar 

  • Casadaban M (1976) Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol 104:541–555

    Google Scholar 

  • Casadaban MJ, Cohen SN (1979) Lactose genes fused to exogenous promoters in one step using a Mu lac bacteriophage: In vivo probe for transcriptional control sequences. Proc Natl Acad Sci USA 76:4530–4533

    Google Scholar 

  • Clark DJ, Maaløe O (1967) DNA replication and the division cycle in Escherichia coli. J Mol Biol 23:99–112

    Google Scholar 

  • Cordaro JC, Melton T, Stratis JP, Atagün M, Gladding C, Hartman PE, Roseman S (1976) Fosfomycin resistance: Selection method for internal and extended deletions of the phosphoenolpyruvate: Sugar phosphotransferase genes of Salmonella typhimurium. J Bacteriol 128:785–793

    Google Scholar 

  • Cozzarelli NR, Freedberg WB, Lin ECC (1968) Genetic control of the L-α-glycerophosphate system in E. coli. J Mol Biol 31:371–387

    Google Scholar 

  • Csonka LN, Clark AJ (1980) Construction of an Hfr strain useful for transferring recA mutations between Escherichia coli strains. J Bacteriol 143:529–530

    Google Scholar 

  • Davis RW, Botstein D, Roth JR (1980) Advanced bacterial genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Fuchs JA, Karlstrom HO (1976) Mapping of nrdA and nrdB in Escherichia coli K-12. J Bacteriol 128:810–814

    Google Scholar 

  • Hall MN, Silhavy TJ (1981) Genetic analysis of the ompB locus in Escherichia coli K-12. J Mol Biol 151:1–15

    Google Scholar 

  • Hayashi S, Koch JP, Lin ECC (1964) Active transport of L-α-glycerophosphate in Escherichia coli. J Biol Chem 239:3098–3015

    Google Scholar 

  • Hofnung M, Hatfield D, Schwartz M (1974) malB region in Escherichia coli K-12: Characterization of new mutations. J Bacteriol 117:40–47

    Google Scholar 

  • Kahan FM, Kahan JS, Cassidy PJ, Kropp H (1974) The mechanism of action of fosfomycin (phosphonomycin). Ann NY Acad Sci 235:364–386

    Google Scholar 

  • Kistler WS, Lin ECC (1971) Anaerobic L-α-glycerophosphate dehydrogenase of Escherichia coli: its genetic locus and its physiological role. J Bacteriol 108:1224–1234

    Google Scholar 

  • Kleckner N, Barker D, Ross DG, Botstein D, Swan IA, Zaben M (1978) Properties of the tetracycline-resistance element Tn10 in Escherichia coli and bacteriophage lambda. Genetics 90:427–461

    Google Scholar 

  • Kleckner N, Roth J, Botstein D (1977) Genetic engineering in vivo using translocatable drug-resistance elements; new method in bacterial genetics. J Mol Biol 116:125–159

    Google Scholar 

  • Komeda Y, Iino T (1979) Regulation of expression of the flagellin gene (hag) in Escherichia coli K-12: Analysis of hag-lac gene fusions. J Bacteriol 139:721–729

    Google Scholar 

  • Lin ECC, Koch JP, Chused TM, Jorgensen SE (1962) Utilization of L-α-glycerophosphate by Escherichia coli without hydrolysis. Proc Natl Acad Sci USA 48:2145–2150

    Google Scholar 

  • Low KB (1972) Escherichia coli K-12 F-prime factors, old and new. Bacteriol Rev 36:587–607

    Google Scholar 

  • Miki K, Silhavy TJ, Andrews KJ (1979) Resolution of glpA and glpT loci into separate operons in Escherichia coli K12 strains. J Bacteriol 138:268–269

    Google Scholar 

  • Miller JH (ed) (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Neu HC, Heppel LA (1965) The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J Biol Chem 240:3685–3692

    Google Scholar 

  • Perlman RL, Pastan I (1969) Pleiotropic deficiency of carbohydrate utilization in an adenylcyclase deficient mutant of Escherichia coli. Biochem Biophys Res Commun 37:151–157

    Google Scholar 

  • Raibaud O, Roa M, Braun-Breton C, Schwartz M (1979) Structure of the malB region in Escherichia coli K12. I. Genetic map of the malK-lamB operon. Mol Gen Genet 174:241–248

    Google Scholar 

  • Schryvers A, Weiner JH (1981) The anaerobic sn-glycerol-3-phosphate dehydrogenase of Escherichia coli; purification and properties. J Biol Chem 256:9959–9965

    Google Scholar 

  • Schwartz D, Beckwith JR (1970) Mutants missing a factor necessary for the expression of catabolite-sensitive operons in E. coli. In: Beckwith JR, Zipser D (eds) The lactose operon. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Silhavy TJ, Hartig-Beecken I, Boos W (1976) Periplasmic protein related to the sn-glycerol-3-phosphate transport system of Escherichia coli. J Bacteriol 126:951–958

    Google Scholar 

  • Silhavy TJ, Brickman E, Bassford PJ Jr, Casadaban MJ, Shuman HA, Schwartz V, Guarente L, Schwartz M, Beckwith JR (1979) Structure of the malB region in Escherichia coli K12. II. Genetic map of the malE, F, G operon. Mol Gen Genet 174:249–259

    Google Scholar 

  • Venkateswaran PS, Wu HC (1972) Isolation and characterization of a phosphonomycin-resistant mutant of Escherichia coli. J Bacteriol 110:935–944

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by E. Bautz

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ludtke, D., Larson, T.J., Beck, C. et al. Only one gene is required for the glpT-dependent transport of sn-glycerol-3-phosphate in Escherichia coli . Mol Gen Genet 186, 540–547 (1982). https://doi.org/10.1007/BF00337962

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00337962

Keywords

Navigation