Skip to main content
Log in

Autorhythmicity and entrainment in excitable membranes

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Low calcium increases the excitability of neurones and can induce autorhythmicity in excitable cells. Numerical solutions of the Hodgkin-Huxley membrane equations, and numerical evaluations of the small-signal impedance and admittance are used to illustrate the increase in resonance produced by low [Ca2+]0. The resonant frequency may be located either by the peak of the amplitude of the impedance, or by the frequency at which the phase angle is zero for 1:1 entrained action potentials. Autorhythmicity is produced by any mechanism which increases the resonant peak of the amplitude of the membrane impedance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agin, D.: Hodgkin-Huxley equations: logarithmic relation between membrane current and frequency of repetitive activity. Nature (London) 201, 625–626 (1964)

    Google Scholar 

  • Arvanitaki, A.: Recherches sur la réponse oscillatoire locale de l'axone géant isole de Sepia. Arch. Int. Physiol. 49, 209–256 (1939)

    Google Scholar 

  • Brown, R.H.: Membrane surface charge: discrete and uniform modelling. Prog. Biophys. Mol. Biol. 28, 341–370 (1974)

    Google Scholar 

  • Chandler, W.K., Fitzhugh, R., Cole, K.S.: Theoretical stability properties of a space-clamped axon. Biophys. J. 2, 102–128 (1962)

    Google Scholar 

  • Chen, Y.-D.: On the admittance of membranes associated with channel conduction. Application to channels at nonequilibrium steady-state. J. Theor. Biol. 81, 633–644 (1979)

    Google Scholar 

  • Chiu, S.Y., Ritchie, J.M., Rogart, R.B., Stagg, D.: A quantitative description of membrane currents in rabbit myelinated nerve. J. Physiol. (London) 292, 149–166 (1979)

    Google Scholar 

  • Cole, K.S.: Dynamic electrical characteristics of the squid axon membrane. Arch. Sci. Physiol. 3, 253–258 (1949)

    Google Scholar 

  • De Haan, R.L., De Felice, L.J.: Oscillatory properties and excitability of the heart cell membrane. In: Theoretical chemistry-4-Periodicity in chemistry and biology. Eyring, H., Henderson, D. (eds.), pp. 181–233. New York: Academic Press 1978

    Google Scholar 

  • Fishman, H.M., Poussart, D.J.M., Moore, L.E., Siebenga, E.: K+ conductance description from the low frequency impedance and admittance of squid axon. J. Membr. Biol. 32, 255–290 (1977)

    Google Scholar 

  • Frankenheuser, B., Hodgkin, A.L.: The action of calcium on the electrical properties of squid axons. J. Physiol. (London) 137, 218–244 (1957)

    Google Scholar 

  • Guttman, R., Feldman, L.: White noise measurement of squid axon membrane impedance. Biochem. Biophys. Res. Commun. 67, 427–432 (1975)

    Google Scholar 

  • Guttman, R., Feldman, L.: Frequency entrainment of squid axon membrane (preprint) (1979)

  • Guttman, R., Hachmeister, L.: Effect of calcium, temperature, and polarizing currents upon alternating current excitation of spaceclamped squid axons. J. Gen. Physiol. 58, 304–321 (1971)

    Google Scholar 

  • Grisell, R.D.: Toward a multi-membrane model for potassium conduction in squid giant axon. J. Theor. Biol. 76, 233–266 (1979)

    Google Scholar 

  • Grissel, R.D., Fishman, H.N.: K+ conduction phenomena applicable to the low frequency impedance of squid axons. J. Membr. Biol. 46, 1–25 (1979)

    Google Scholar 

  • Hill, A.V.: Excitation and accommodation in nerve. Proc. R. Soc. London, Ser. B 119, 305–355 (1936)

    Google Scholar 

  • Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (London) 117, 500–544 (1952)

    Google Scholar 

  • Holden, A.V.: The response of excitable membrane models to a cyclic input. Biol. Cybernetics 21, 1–7 (1976)

    Google Scholar 

  • Huxley, A.F.: Ion movements during nerve activity. Ann. N.Y. Acad. Sci. 81, 221–246 (1959)

    Google Scholar 

  • Katz, B.: Electric excitation of nerve. London: Oxford University Press 1939

    Google Scholar 

  • Mauro, A, Conti, F., Dodge, F., Schor, R.: Subthreshold behavior and phenomenological impedance of the squid giant axon. J. Gen. Physiol. 55, 497–523 (1970)

    Google Scholar 

  • Minorsky, N.: Non-linear mechanics. Ann. Arbor: J.W. Edwards 1947

    Google Scholar 

  • Monnier, A.M.: L'excitation électrique des tissus. Paris: Hermann 1934

    Google Scholar 

  • Monnier, A.M.: The damping factor as a functional criterion in nerve physiology. Cold spring Harbor Symp. Quant. Biol. 17, 69–93 (1952)

    Google Scholar 

  • Monnier, A.M., Coppee, G.: Nouvelles recherches sur la resonance des tissus excitables. I. Relation entre la rythmicite de la response nerveuse et la resonance. Arch. Int. Physiol. 48, 129–180 (1939)

    Google Scholar 

  • Noble, D.: The relation of Rushton's “liminal length” for excitation to the resting and active conductances of excitable cells. J. Physiol. (London) 226, 573–591 (1972)

    Google Scholar 

  • Noble, D.: Cardiac action potentials and pacemaker activity. Recent advances in physiology. Linden, R.J., (ed.), pp. 1–50, London: Churchill 1974

    Google Scholar 

  • Rashevsky, N.: Outline of a physico-mathematical theory of excitation and inhibition. Protoplasma 20, 42–56 (1933)

    Google Scholar 

  • Rushton, W.A.H.: Initiation of the propagated disturbance. Proc. R. Soc. London, Ser. B 124, 210–243 (1937)

    Google Scholar 

  • Stein, R.B.: The frequency of nerve action potentials generated by applied currents. Proc. Roy. Soc. London, Ser. B 167, 63–86 (1967)

    Google Scholar 

  • Steinbach, H.B., Spiegelman, S., Kawata, N.: The effect of potassium and calcium on the electrical properties of squid axons. J. Cell. Comp. Physiol. 24, 147–154 (1944)

    Google Scholar 

  • Young, G.: Note on excitation theories. Psychometrika 2, 103–106 (1937)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holden, A.V. Autorhythmicity and entrainment in excitable membranes. Biol. Cybernetics 38, 1–8 (1980). https://doi.org/10.1007/BF00337395

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00337395

Keywords

Navigation