Skip to main content
Log in

Melanogenesis in amphibians

I. A study of the fine structure of the normal and phenylthiourea-treated pigmented epithelium in Rana pipiens tadpole eyes

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

The pigmented epithelium of Rana pipiens tadpole eyes normally develops at least two types of melanosomes: (1) an elongated melanin granule of relatively homogeneous electron density, and (2) a complex melanosome which has an outer electrondense area and one or more less dense cores. Evidence indicates that complex melanosomes are formed by new melanin enclosing preexisting melanosomes. An organized fibrillar premelanosome is demonstrated with the aid of the antimelanogenic compound phenylthiourea (PTU). These premelanosomes are the developing forms of the elongated melanosomes. There is evidence that the premelanosomes originate in the smooth endoplasmic reticulum. Phenylthiourea blocks melanin synthesis in the premelanosomes; however, removal of the PTU allows pigment deposition. This finding of an organized, fibrillar premelanosome in an amphibian marks the lowest phylogenetic group in which these organelles have been described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balinsky, B. I., Devis, R. J.: Origin and differentiation of cytoplasmic structures in the oocytes of Xenopus laevis. Acta Embryol. Morph. exp. 6, 55–108 (1963).

    Google Scholar 

  • Birbeck, M. S. C., Barnicot, N. A.: Electron microscope studies on pigment formation in human hair follicles. In: Pigment cell biology, ed. by M. Gordon, p. 549–561. New York: Academic Press 1959.

    Google Scholar 

  • Breathnach, A. S., Poyntz, S. V.: Electron microscopy of pigment cells in tail skin of Lacerta vivipara. J. Anat. (Lond.) 100, 549–597 (1966).

    Google Scholar 

  • —, Wyllie, L. M.-A.: Ultrastructure of retinal pigment epithelium of the human fetus. J. Ultrastruct. Res. 16, 584–597 (1966).

    Google Scholar 

  • Dieke, S. H.: Pigmentation and hair growth in black cats, as modified by the chronic administration of thiourea, phenylthiourea and alphanaphthyl thiourea. Endocrinology 103, 123–136 (1947).

    Google Scholar 

  • Dowling, J. E., Gibbons, I. R.: The fine structure of the pigment epithelium in the albino rat. J. Cell Biol. 14, 459–474 (1962).

    Google Scholar 

  • Drochmans, P.: Melanin granules: Their fine structure, formation, and degradation in normal and pathological tissues. Int. Rev. exp. Path. 2, 357–422 (1963).

    Google Scholar 

  • —: Ultrastructure of melanin granules. In: Advances in biology of skin — the pigmentary system, vol. VIII, p. 169–177. Oxford and New York: Pergamon Press 1967.

    Google Scholar 

  • Dubois, K. P., Erway, W. F.: Studies on the mechanism of action of thiourea and related compounds. II. Inhibition of oxidation enzymes and oxidations catalyzed by copper. J. biol. Chem. 165, 711–720 (1946).

    Google Scholar 

  • Fitzpatrick, T. B., Quevedo, W. C., Jr., Levene, A. L., McCovern, V. J., Mishima, Y., Oettle, A. G.: Terminology of vertebrate melanincontaining cells 1965. Science 152, 88–89 (1966).

    Google Scholar 

  • Hope, J., Humphries, A. A. Jr., Bourne, G. H.: Ultrastructural studies on developing oocytes of the salamander Triturus viridescens. J. Ultrastruct. Res. 10, 557–566 (1964).

    Google Scholar 

  • Lerche, W., Wulle, K. G.: Über die Genese der Melaningranula in der embryonalen menschlichen Retina. Z. Zellforsch. 76, 452–457 (1967).

    Google Scholar 

  • Lerner, A. B., Fitzpatrick, T. B.: Biochemistry of melanin formation. Physiol. Rev. 30, 91–126 (1950).

    Google Scholar 

  • —, Calkins, E., Summerson, W. H.: Mammalian tyrosinase: The relationship to copper to enzymatic activity. J. biol. Chem. 187, 793–802 (1950).

    Google Scholar 

  • Maul, G. G.: Golgi-melanosome relationship in human melanoma in vitro. J. Ultrastruct. Res. 26, 163–176 (1968).

    Google Scholar 

  • Millott, N., Lynn, W. G.: The effect of phenylthiourea on pigmentation of melanin in the developing frog, Eleutherodactylus martinicensis. Quart. J. micr. Sci. 95, 17–22 (1954).

    Google Scholar 

  • —: Further studies on the effect of phenylthiourea on pigmentation by melanin in amphibians. Biol. Bull. 129, 562–572 (1965).

    Google Scholar 

  • —: Ubiquity of melanin and the effect of phenylthiourea. Nature (Lond.) 209, 99–101 (1966).

    Google Scholar 

  • Moyer, F. H.: Electron microscope studies on the origin, development, and genetic control of melanin granules in the mouse eye. In: The structure of the eye, ed. by G. K. Smelser, p. 469–486. New York: Academic Press 1961.

    Google Scholar 

  • —: Genetic effects of melanosome fine structure and ontogeny in normal and malignant cells. Ann. N. Y. Acad. Sci. 100, 584–606 (1963).

    Google Scholar 

  • —: Genetic variations in the fine structure and ontogeny of mouse melanin granules. Am. Zool. 6, 43–66 (1966).

    Google Scholar 

  • Ogawa, T.: Studies on the lens-regeneration in the larval newt lacking pigment of the eye. Embryology 7, 95–108 (1962).

    Google Scholar 

  • Parakkal, P. F.: Transfer of premelanosomes into the keratinizing cells of albino hair follicle. J. Cell Biol. 35, 473–477 (1967).

    Google Scholar 

  • Rappaport, H., Nakai, T., Swift, H.: The fine structure of normal and neoplastic melanocytes in the Syrian hamster, with particular reference to carcinogen-induced melanotic tumors. J. Cell Biol. 16, 171–186 (1963).

    Google Scholar 

  • Sims, R. T.: The turnover of melanin in Xenopus laevis treated with phenylthiourea. Quart. J. micr. Sci. 102, 227–237 (1961).

    Google Scholar 

  • —: The action of phenyl-thiourea on melanogenesis in Xenopus laevis. Quart. J. micr. Sci. 103, 439–446 (1962).

    Google Scholar 

  • Stäubli, N., Loustalot, P.: Electron microscopy of transplantable melanotic and amelanotic hamster melanomas. Cancer Res. 22, 84–88 (1962).

    Google Scholar 

  • Stolk, A.: The role of the Golgi apparatus in the formation of melanin granules in the malignant cutaneous melanoma of killifish hybrids. Naturwissenschaften 47, 448–449 (1960).

    Google Scholar 

  • Vogel, F. S., McGregor, D. H.: The fine structure and some biochemical correlates of melanogenesis in the ink gland of the squid. Lab. Invest. 13, 767–778 (1964).

    Google Scholar 

  • Wartenberg, H.: Elektronenmikroskopische und histochemische Studien über die Oogenese der Amphibieneizelle. Z. Zellforsch. 58, 427–486 (1962).

    Google Scholar 

  • Whittaker, J. R.: An analysis of melanogenesis in differentiating pigment cells of ascidian embryos. Develop. Biol. 14, 1–39 (1966).

    Google Scholar 

  • Wischnitzer, S.: The cytoplasmic inclusions of the salamander oocyte. I. Pigment granules. Acta Embryol. Morph. exp. 8, 141–149 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An Oak Ridge Graduate Fellow from Catholic University of America, Washington, D.C., under appointment from Oak Ridge Associated Universities.

The MAN Program is supported by the National Cancer Institute, the National Institute of General Medical Sciences, the National Institute of Allergy and Infectious Diseases, and the U.S. Atomic Energy Commission.

Oak Ridge National Laboratory is operated by Union Carbide Corporation Nuclear Division for the U.S. Atomic Energy Commission.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eppig, J.J. Melanogenesis in amphibians. Z. Zellforsch. 103, 238–246 (1970). https://doi.org/10.1007/BF00337315

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00337315

Key-Words

Navigation