Skip to main content
Log in

Multiple equilibria and exotic behaviour in excitable membranes

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The excitation equation for an excitable membrane dV/dt=F(V) may have multiple equilibria where F(V)=0, and these may be stable or unstable. We demonstrate multiple equilibria in the Hodgkin-Huxley equations when either gK or [Ca2+]0 is lowered in the presence of a hyperpolarising current density. Under these conditions molluscan somata exhibit exotic behaviours-endogenous paroxysmal depolarising shifts and complex multiple spikes reminiscent of the normal complex activity of some mammalian central neurones. Complex discharge waveforms can be an expression of membrane (differential) properties, rather than electrotonic, geometric (partial differential) behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, D.J., Smith, S.J., Thompson, S.H.: Ionic currents in molluscan soma. Ann. Rev. Neurosci. 3, 141–167 (1980)

    Google Scholar 

  • Aldrich, R.W., Jr., Getting, P.A., Thompson, S.H.: Mechanism of frequency-dependent broadening of molluscan neurone soma spikes. J. Physiol. 291, 531–544 (1979)

    Google Scholar 

  • Armstrong, C.M.: Interaction of tetraethylammonium ion derivatives with the potassium ion channel of giant axons. J. Gen. Physiol. 58, 413–443 (1971)

    Google Scholar 

  • Begenisich, T., Stevens, C.F.: How many conductance states do potassium channels have? Biophys. J. 15, 843–846 (1975)

    Google Scholar 

  • Brown, R.H.: Membrane surface charge: discrete and uniform modelling. Progr. Biophys. Molec. Biol. 28, 341–370 (1974)

    Google Scholar 

  • Carpenter, G.A.: A mathematical analysis of excitable membrane phenomena. Progr. Cybern. Syst. Res. 3, 505–514 (1978)

    Google Scholar 

  • Chiu, S.Y., Ritchie, J.M., Rogart, R.B., Stagg, D.: A quantitative description of membrane currents in rabbit myelinated nerve. J. Physiol. 292, 149–166 (1979)

    Google Scholar 

  • Cohen, H.: Mathematical developments in Hodgkin-Huxley theory and its approximations. Lect. Math. Life Sci. 8, 89–123 (1976)

    Google Scholar 

  • Conti, F., DeFelice, L.J., Wanke, E.: Potassium and sodium ion current noise in the membrane of the squid. J. Physiol. 248, 45–82 (1975)

    Google Scholar 

  • Conti, F., Neher, E.: Single channel recordings of K+ currents in squid axons. Nature 285, 140–145 (1980)

    Google Scholar 

  • Dodge, F.: A study of the ionic permeability changes underlying excitation in myelinated nerve fibres in the frog. Thesis: Rockefeller University. University Microfilms, Ann Arbor, Michigan, 64-7333 (1963)

  • Fitzhugh, R.: Mathematical models of excitation and propagation in nerve. In: Biological engineering, Schwan, H.P., ed. New York: McGraw-Hill 1969

    Google Scholar 

  • Frankenheuser, B., Hodgkin, A.L.: The action of calcium on the electrical properties of squid axons. J. Physiol. 137, 218–244 (1957)

    Google Scholar 

  • Frankenheuser, B., Huxley, A.F.: The action potential in the myelinated nerve fibre of Xenopus laevis as computed on the basis of voltage-clamp data. J. Physiol. 171, 302–315 (1964)

    Google Scholar 

  • Grantyn, A., Grantyn, R., Holden, A.V., Schierwagen, A.: Double discharges produced in a giant neurone of the pond-snail and superior collicular neurones of the anaesthetised cat. J. Physiol. 324, 61P (1982)

  • Hassard, B.: Bifurcation of periodic solutions of the Hodgkin-Huxley model for the squid giant axon. J. Theor. Biol. 71, 401–420 (1978)

    Google Scholar 

  • Haydon, P.G., Winlow, W., Holden, A.V.: The effects of menthol on central neurones of the pond-snail, Lymnaea stagnalis (L.). Comp. Biochem. Physiol. 73C, 95–100 (1982)

    Google Scholar 

  • Herman, A., Gorman, A.L.F.: Effects of tetraethylammonium on potassium currents in a molluscan neurone. J. Gen. Physiol. 78, 87–110 (1981)

    Google Scholar 

  • Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  • Holden, A.V.: Membrane current fluctuations and neuronal information processing. Advances in Physiological Science 30, 23–42 (1981)

    Google Scholar 

  • Holden, A.V.: The mathematics of excitation. In: Biomathematics in 1980, pp. 15–47. Ricciardi, L., Scott, A.C., eds. Amsterdam: North-Holland 1982

    Google Scholar 

  • Holden, A.V., Knapp, D.G., Yoda, M.: The periodic activity of excitable membranes develops from equilibria via Hopf bifurcations. J. Physiol. 330, 83–84 P (1983)

    Google Scholar 

  • Holden, A.V., Winlow, W.: Bifurcation of periodic activity from periodic activity in a molluscan neurone. Biol. Cybern. 42, 189–194 (1981)

    Google Scholar 

  • Holden, A.V., Winlow, W.: Neuronal activity as the behaviour of a differential system. IEEE Trans. SMC (submitted)

  • Holden, A.V., Winlow, W., Haydon, P.G.: Effects of tetraethylammonium and 4-aminopyridine on the somatic potentials of an identified molluscan neurone. Comp. Biochem. Physiol. 73A, 303–310 (1982a)

    Google Scholar 

  • Holden, A.V., Winlow, W., Haydon, P.G.: The induction of periodic and chaotic activity in a molluscan neurone. Biol. Cybern 43, 169–173 (1982b)

    Google Scholar 

  • Holden, A.V., Yoda, M.: Ionic channel density of excitable membranes can act as a bifurcation parameter. Biol. Cybern. 42, 29–38 (1981a)

    Google Scholar 

  • Holden, A.V., Yoda, M.: The effects of ionic channel density in neuronal function. J. Theor. Neurobiol. 1, 60–81 (1981b)

    Google Scholar 

  • Holden, A.V., Yoda, M.: Bifurcation theory and autorhythmicity of the excitable membrane of nerve cells. Proc. 2nd World Congress on Mathematics at the Service of Man, Las Palmas pp. 355–360 (1982)

  • Huxley, A.F.: Ion movements during nerve activity. Ann. N.Y. Acad. Sci. 81, 221–246 (1957)

    Google Scholar 

  • Koestler, J., Byrne, J.H. (eds.): Molluscan nerve cells: from biophysics to behaviour. Cold Spring Harbor Laboratory (1980)

  • Llinas, R., Sugimori, M.: Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J. Physiol. 305, 171–198 (1980)

    Google Scholar 

  • Rinzel, J.: On repetitive activity in nerve. Fed. Proc. Fed. Am. Soc. Exp. Biol. 37, 2793–2802 (1978)

    Google Scholar 

  • Thompson, S.H.: Three pharmacologically distinct potassium channels in molluscan neurones. J. Physiol. 265, 465–488 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holden, A.V., Haydon, P.G. & Winlow, W. Multiple equilibria and exotic behaviour in excitable membranes. Biol. Cybern. 46, 167–172 (1983). https://doi.org/10.1007/BF00336798

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00336798

Keywords

Navigation