Skip to main content
Log in

Biogene Amine im Gehirn vom Frosch (Rana esculenta)

Biogenic amines in the brain of the frog (Rana esculenta)

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

The distribution of biogenic amines in the central nervous system of Rana esculenta was investigated by means of the fluorescence-microscopical detection of catecholand tryptamines. The nucleus reticularis mesencephali was found to contain numerous neurones rich in catechol- and tryptamines. Apart from this nucleus nerve cells in the organon vasculosum hypothalami and in the area praeoptica were found to contain catecholamines. The clublike processes of these neurones penetrate the ependymal layer and extend into the ventricle. These structures are presumably responsible for a secretion of biogenic amines into the cerebrospinal fluid. Catecholamine- and serotonin-containing axons terminate on different nuclei and areas. Besides the periventricular cellular layer of the tuber cinereum and the area praeoptica, the pars ventrolateralis of the nucleus septalis lateralis, striatum ventrale and epistriatum are pervaded by terminals of catecholamine-containing neurons. Serotonincontaining varicosities are mainly to be found in nuclei, which are intercalated in sensory pathways (nucleus isthmi, corpus geniculatum laterale, area praetectalis, tectum opticum, thalamus dorsalis, neostriatum). Further areas of distribution of 5-hydroxytryptamine-fibers are the habenula and the nucleus interpeduncularis, nuclei which coordinate impulses from the limbic system projecting them on visceral centers of the medulla oblongata.

Zusammenfassung

Mit Hilfe der Methode zur fluoreszenzmikroskopischen Lokalisation von Catechol- und Tryptaminen wurde die Verteilung dieser Stoffe im ZNS von Rana esculenta untersucht. Catecholamin- und serotoninhaltige Neurone liegen im Nucleus reticularis mesencephali. Außerdem finden sich catecholaminhaltige Nervenzellen im Organon vasculosum hypothalami und in der Area praeoptica. Diese aminproduzierenden Zellen entsenden Zellfortsätze durch die Ependymschicht in den Ventrikel. Über diese Ausläufer erfolgt möglicherweise eine Sekretion biogener Amine in den Liquor cerebrospinalis. Catecholamin- und serotoninhaltige Axone erreichen voneinander verschiedene Kerngebiete und Areale. Neben dem periventrikulären Zellager im Tuber cinereum und in der Area praeoptica werden vor allem der ventrolaterale Teil des lateralen Septumkerns, Striatum ventrale und Epistriatum von Endstrecken catecholaminhaltiger Axone durchdrungen. Serotoninhaltige Varicositäten finden sich dagegen vor allem in Kerngebieten, die in sensorische Bahnen eingeschaltet sind (Nucleus isthmi, corpus geniculatum laterale, Area praetectalis, Tectum opticum, Thalamus dorsalis, Neostriatum). Weitere Ausbreitungsgebiete 5-Hydroxytryptamin-haltiger Fasern sind die Habenula und der Nucleus interpeduncularis, Kerngebiete, über die Erregungen aus dem limbischen System auf vegetative Zentren der Medulla oblongata geleitet werden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Adam, H.: Zur Morphologie der ventrikelnahen Hirnwandgebiete bei Cyclostomen und Amphibien. Zool. Anz., Suppl. 22 (Verh. Dtsch. Zool. Ges.), 251–264 (1959).

    Google Scholar 

  • Agduhr, E.: Über ein zentrales Sinnesorgan bei den Vertebraten. Z. Anat. Entwickl.-Gesch. 66, 223–360 (1922).

    Google Scholar 

  • Akagi, K., Powell, E. W.: Differential projections of habenular nuclei. J. comp. Neurol. 132, 263–274 (1968).

    Google Scholar 

  • Andén, N. E., Dahlström, A., Fuxe, K.: Ascending monoamine neurons to the telencephalon and diencephalon. Acta physiol. scand. 67, 313–326 (1966).

    Google Scholar 

  • Anderson, P., Bruland, H., Kaada, B. R.: Activation of the field CA1 of the hippocampus by septal stimulation. Acta physiol. scand. 51, 29–40 (1961).

    Google Scholar 

  • Andy, O. J., Stephan, H.: The septum of the cat, p. 1–84. Springfield Ill.: Ch. C. Thomas 1964.

    Google Scholar 

  • —: The nuclear configuration of the septum of Galago demidovii. J. comp. Neurol. 111, 503–545 (1959).

    Google Scholar 

  • —: Septal nuclei in the soricidae (insectivors); cytoarchitectonic study. J. comp. Neurol. 117, 251–274 (1961).

    Google Scholar 

  • Arbuthnott, G. W.: A histochemical study of catecholamines in the somato sensory areas of rat cerebral cortex. J. Physiol. (Lond.) 186, 118–119 (1966).

    Google Scholar 

  • Bargmann, W.: Über die neurosekretorische Verknüpfung von Hypothalamus und Neurohypophyse. Z. Zellforsch. 34, 610–634 (1949).

    Google Scholar 

  • —: Das Zwischenhirn-Hypophysensystem. Berlin-Göttingen-Heidelberg: Springer 1954.

    Google Scholar 

  • —: Weitere Untersuchungen am neurosekretorischen Zwischenhirn-Hypophysensystem. Z. Zellforsch. 40, 247–272 (1955).

    Google Scholar 

  • Baumgarten, H. G.: Vorkommen und Verteilung adrenerger Nervenfasern im Darm der Schleie (Tinca vulgaris Cuv.). Z. Zellforsch. 76, 248–258 (1967).

    Google Scholar 

  • — Braak, H.: Catecholamine im Hypothalamus vom Goldfisch (Carassius auratus). Z. Zellforsch. 80, 246–263 (1967).

    Google Scholar 

  • Baumgarten, H. G.: Cateohclamine im Gehirn der Eidechse (Lacerta viridis und Lacerta muralis). Z. Zellforsch. 86, 574–602 (1968).

    Google Scholar 

  • Bertler, A.: Effect of reserpine on the storage of catecholamines in brain and other tissues. Acta physiol. scand. 51, 75–83 (1961).

    Google Scholar 

  • Blackstad, T., Fuxe, K., Hökfelt, T.: Noradrenaline nerve terminals in the hippocampal region of the rat and the Guinea pig. Z. Zellforsch. 76, 463–473 (1967).

    Google Scholar 

  • Braak, H.: Über die Gestalt des neurosekretorischen Zwischenhirn-Hypophysen-Systems von Spinax niger. Z. Zellforsch. 58, 265–276 (1962).

    Google Scholar 

  • —: Das Ependym der Hirnventrikel von Chimaera monstrosa (unter besonderer Berücksichtigung des Organon vasculosum praeopticum). Z. Zellforsch. 60, 582–608 (1963).

    Google Scholar 

  • —: Elektronenmikroskopische Untersuchungen an Catecholaminkernen im Hypothalamus vom Goldfisch (Carassius auratus). Z. Zellforsch. 83, 398–415 (1967).

    Google Scholar 

  • Braak, H.: Zur Ultrastruktur des Organon vasculosum hypothalami der Smaragdeidechse (Lacerta viridis). Z. Zellforsch. 84, 285–303 (1968).

    Google Scholar 

  • —: Butylmethacrylat:Paraffin, ein Einbettungsverfahren für die Lichtmikroskopie. Mikroskopie 22, 17–20 (1967).

    Google Scholar 

  • —, Baumgarten, H. G.: 5-Hydroxytryptamin im Zentralnervensystem vom Goldfisch (Carassius auratus). Z. Zellforsch. 81, 416–432 (1967).

    Google Scholar 

  • —, Falck, B.: 5-Hydroxytryptamin im Gehirn der Eidechse (Lacerta viridis und Lacerta muralis). Z. Zellforsch. 90, 161–185 (1968).

    Google Scholar 

  • —, Hehn, G. von: Zur Feinstruktur des Organon vasculosum hypothalami des Frosches (Rana temporaria). Z. Zellforsch. 97, 125–136 (1969).

    Google Scholar 

  • Bradley, P. B.: The effects of 5-hydroxytryptamine on the electrical activity of the brain and on behaviour in the conscious cat. In: 5-Hydroxytryptamine (ed. G. B. Lewis), p. 214–220. London: Pergamon 1958.

    Google Scholar 

  • Bremer, F.: “Cerveau isolé” et physiologie du sommeil. C. B. Soc. Biol. (Paris) 118, 1235–1241 (1935).

    Google Scholar 

  • Brightman, M. W., Palay, S. L.: The fine structure of ependyma in the brain of the rat. J. Cell Biol. 19, 415–439 (1963).

    Google Scholar 

  • Brücke, F., Petsche, H., Pillat, B., Deisenhammer, E.: Die Beeinflussung der „Hippocampus-Arousal-Reaktion“ beim Kaninchen durch elektrische Reizung im Septum. Pflügers Arch. ges. Physiol. 269, 319–338 (1959).

    Google Scholar 

  • —: Ein Schrittmacher in der medialen Septumregion des Kaninchengehirns. Pflügers Arch, ges. Physiol. 269, 135–140 (1959).

    Google Scholar 

  • —: Über Veränderungen des Hippocampus-Eletroencephalogrammes beim Kaninchen nach Novocain-Injektion in die Septum Region. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 237, 276–284 (1959).

    Google Scholar 

  • Brugge, J. F.: An electrographic study of the hippocampus and neocortex in unrestrained rats following septal lesions. Electroenceph. clin. Neurophysiol. 18, 36–44 (1965).

    Google Scholar 

  • Bruner, A.: Self-stimulation in the rabbit: An anatomical map of stimulation effects. J. comp. Neurol. 131, 615–630 (1967).

    Google Scholar 

  • Charlton, H. H.: A gland-like ependymal structure in the brain. Proc. kon. med. Akad. Wet. Cl. Sci. 31(II), 823–836 (1928).

    Google Scholar 

  • —: A gland-like organ in the brain. Anat. Rec. 29, 352 (1925).

    Google Scholar 

  • Clairambault, P.: Le télencéphale de Discoglossus pictus (Oth), Etude anatomique chez le têtard et chez l'adulte. J. Hirnforsch. 6, 87–121 (1963).

    Google Scholar 

  • —: Le télencéphale du jeune têtard de Discoglossus pictus (Oth). J. Hirnforsch. 7, 499–512 (1965).

    Google Scholar 

  • —: Capanna, E.: L'istologia del nucleus lateralis septi degli anfibi anuri. R. C. Accad. naz. Lineei (Ser. VIII) 45, 1–6 (1968).

    Google Scholar 

  • —: Derer, P.: Contributions à l'étude architectonique du Télencéphale des Ranidés. J. Hirnforsch. 10, 122–172 (1968).

    Google Scholar 

  • Corrodi, H., Jonsson, G.: The formaldehyde fluorescence method for the histochemical demonstration of biogenic amines. A review on the methodology. J. Histochem. Cytochem. 15, 65–78 (1967).

    Google Scholar 

  • —, Malmfors, T.: Factors affecting the quality and intensity of the fluorescence in the histochemical method for demonstration of catecholamines. Acta histochem. (Jena) 25, 367–370 (1966).

    Google Scholar 

  • Cragg, B. G.: Olfactory and other afferent connections of the hippocampus in the rabbit, rat, and cat. Exp. Neurol. 3, 588–600 (1961).

    Google Scholar 

  • —: The connections of the habenula in the rabbit. Exp. Neurol. 3, 388–410 (1961).

    Google Scholar 

  • Craigie, E. H.: Studies on the brain of the Kiwi (Apteryx australis). J. comp. Neurol. 49, 223–357 (1930).

    Google Scholar 

  • Crosby, E. C., De Jonge, B. R., Schneider, R. C.: Evidence for some of the trends in the phylogenetic development of the vertebrate telencephalon. In: Evolution of the forebrain (ed. R. Hassler and H. Stephan), p. 117–135. Stuttgart: Thieme 1966.

    Google Scholar 

  • Dahlström, A., Fuxe, K: Evidence for the existence of monoamine-containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta physiol. scand. 62, Suppl. 232, 1–55 (1964).

    Google Scholar 

  • Dahlström, A.: Evidence for the existence of monoamine neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta physiol. scand. 64, Suppl. 247, 1–36 (1965).

    Google Scholar 

  • —, Olson, L., Ungerstedt, M.: Ascending systems of catecholamine neurons from the lower brain stem. Acta physiol. scand. 62, 485–486 (1964).

    Google Scholar 

  • Dierickx, K.: The structure and activity of the hypophysis of Rana temporaria in normal and in experimental conditions. Z. Zellforsch. 61, 920–939 (1964).

    Google Scholar 

  • Eichner, D.: Zur Frage des Neurosekretübertritts in den III. Ventrikel beim Säuger. Z. mikr.-anat. Forsch. 69, 388–394 (1963).

    Google Scholar 

  • Eidelberg, E., Goldstein, G. P., Deza, L.: Evidence for Serotonin as a possible inhibitory transmitter in some limbic structures. Exp. Brain Res. 4, 73–80 (1967).

    Google Scholar 

  • Enemar, A., Falck, B.: On the presence of adrenergic nerves in the pars intermedia of the frog (Rana temporaria). Gen. comp. Endocr. 5, 577–583 (1965).

    Google Scholar 

  • —, Iturriza, F. C.: Adrenergic nerves in the pars intermedia of the pituitary in the toad, Bufo arenarum. Z. Zellforsch. 77, 325–330 (1967).

    Google Scholar 

  • Falck, B., Hillarp, N. A., Thieme, G., Torp, A.: Fluorescence of catecholamines and related compounds condensed with formaldehyde. J. Histochem. Cytochem. 10, 348–354 (1962).

    Google Scholar 

  • —, Owman, Ch.: A detailed methodological description of the fluorescence method for the cellular demonstration of biogenic monoamines. Acta Univ. Lund 2, No 7, 1–23 (1965).

    Google Scholar 

  • Fleischhauer, K.: Untersuchungen am Ependym des Zwischen- und Mittelhirns der Landschildkröte (Testudo graeca). Z. Zellforsch. 46, 729–767 (1957).

    Google Scholar 

  • —: Fluoreszenzmikroskopische Untersuchungen an der Faserglia. I. Beobachtungen an den Wandungen der Hirnventrikel der Katze (Seitenventrikel, III, Ventrikel). Z. Zellforsch. 51, 367–496 (1960).

    Google Scholar 

  • —, Petrovicky, P.: Über den Bau der Wandungen des Aquaeductus cerebri und des IV. Ventrikels der Katze. Z. Zellforsch. 88, 113–125 (1968).

    Google Scholar 

  • French, J. D., Amerongen, F. K. von, Magoun, H. W.: An activating system in brain stem of monkey. Arch. Neurol. (Chic.) 68, 577–590 (1952).

    Google Scholar 

  • Frontera, J. G.: A study of the anuran diencephalon. J. comp. Neurol. 96, 1–69 (1952).

    Google Scholar 

  • Fuxe, K.: Evidence for the existence of monoamine neurons in the central nervous system. IV. The distribution of monoamine terminals in the central nervous system. Acta physiol. scand. 64, Suppl. 247, 37–121 (1965).

    Google Scholar 

  • —, Hamberger, B., Hökfelt, T.: Distribution of noradrenaline nerve-terminals in cortical areas of the rat. Brain Res. 8, 125–131 (1968).

    Google Scholar 

  • —, Hökfelt, T., Nilsson, O.: A fluorescence and electronmicroscopic study on certain brain regions rich in monoamine terminals. Amer. J. Anat. 117, 33–46 (1965).

    Google Scholar 

  • —, Ljunggren, L.: Cellular localization of monoamines in the upper brain stem of the pigeon. J. comp. Neurol. 125, 355–381 (1965).

    Google Scholar 

  • —: Evidence for the existence of monamine containing neurons in the central nervous system. III. The monoamine nerve terminal. Z. Zellforsch. 65, 573–596 (1965).

    Google Scholar 

  • —: Evidence for the existence of monoamine neurons in the central nervous system. IV. The distribution of monoamine terminals in the central nervous system. Acta physiol.scand. 64, Suppl. 247, 37–85 (1965).

    Google Scholar 

  • Goslar, H. G., Tischendorf, F. T.: Cytologische Untersuchungen an den „vegetativen Zellgruppen“ des Mes- und Rhombencephalon bei Teleostiern und Amphibien, nebst Bemerkungen über Hypothalamus und Ependym. Z. Anat. Entwickl.-Gesch. 117, 259–294 (1953).

    Google Scholar 

  • Green, J. D.: The rhinencephalon: Aspects of its relation to behavior and the reticular activating system. In: Reticular formation of the brain (ed. H. H. Jasper et al.) Henry Ford Hospital Intern. Symposium, p. 607–619. London: Churchill 1957.

    Google Scholar 

  • —, Arduini, A.: Hippocampal electrical activity in arousal. J. Neurophysiol. 17, 533–557 (1954).

    Google Scholar 

  • Hamberger, B., Malmfors, T., Sachs, Ch.: Standardisation of paraformaldehyde and of certain procedures for the histochemical demonstration of catecholamines. J. Histochem. Cytochem. 13, 147 (1965).

    Google Scholar 

  • Hamel, E. G.: A study of the hippocampal formation in the opossum, Didelphys virginiana. In: Evolution of the forebrain (R. Hassler und H. Stephan (ed.), p. 81–91. Stuttgart: Thieme 1966.

    Google Scholar 

  • Halpern, M., Scalia, F., Riss, W.: On the nature of the hippocampal commissure in the frog. Brain Behav. Evol. 1, 155–174 (1968).

    Google Scholar 

  • Harrison, J. M., Lyon, M.: The role of the septal nuclei and components of the fornix in the behavior of the rat. J. comp. Neurol. 108, 121–137 (1957).

    Google Scholar 

  • Hernandez-Peon, R.: Central neuro-humoral transmission in sleep and wakefulness. In: Sleep mechanisms. Progress in brain research. vol. 18, p. 96–117 (ed. K. Akert, C. Bally, and J. P. Schadé). Amsterdam: Elsevier Publ. Co. 1965.

    Google Scholar 

  • Herrick, C. J.: The connections of the vomeronasal nerve, accessory olfactory bulb and amygdala in amphibia. J. comp. Neurol. 33, 213–280 (1921).

    Google Scholar 

  • —: The amphibian forebrain. I. Amblystoma, external form. J. comp. Neurol. 37, 361–371 (1924).

    Google Scholar 

  • —: II. The olfactory bulb of Amblystoma. J. comp. Neurol. 37, 373–396 (1924).

    Google Scholar 

  • —: III. The optic tracts and centers of Amblystoma and the frog. J. comp. Neurol. 39, 433–489 (1925).

    Google Scholar 

  • —: IV. The cerebral hemispheres of Amblystoma. J. comp. Neurol. 43, 231–325 (1927).

    Google Scholar 

  • —: V. The olfactory bulb of Necturus. J. comp. Neurol. 53, 55–69 (1931).

    Google Scholar 

  • —: VI. Necturus. J. comp. Neurol. 58, 1–288 (1933).

    Google Scholar 

  • —: VII. The architectural plan of the brain. J. comp. Neurol. 58, 481–505 (1933).

    Google Scholar 

  • —: VIII. Cerebral hemispheres and palliai primordia. J. comp. Neurol. 58, 737–759 (1933).

    Google Scholar 

  • —: IX. Neuropil and other interstitial nervous tissue. J. comp. Neurol. 59, 93–116 (1934).

    Google Scholar 

  • —: X. Localized functions and integrating functions. J. comp. Neurol. 59, 239–266 (1934).

    Google Scholar 

  • —: The interpeduncular nucleus of the brain of Necturus. J. comp. Neurol. 60, 111–135 (1934).

    Google Scholar 

  • —: The membranous parts of the brain, meninges and their blood vessels in Amblystoma. J. comp. Neurol. 61, 297–346 (1935).

    Google Scholar 

  • Hild, W.: Vergleichende Untersuchungen über Neurosekretion im Zwischenhirn vom Amphibien und Reptilien. Z. Anat. Entwickl.-Gesch. 115, 459–479 (1951).

    Google Scholar 

  • Hoffman, H. H.: The olfactory bulb, accessory olfactory bulb and hemisphere of some anurans. J. comp. Neurol. 120, 317–368 (1963).

    Google Scholar 

  • —: The hippocampal and septal formations in anurans. In: Evolution of the forebrain (ed. B. Hassler und H. Stephan), p. 61–72. Stuttgart: Thieme 1966.

    Google Scholar 

  • —: Certain highly developed and phylogenetically significant hemisphere areas of the Surinam toad (Pipa pipa). Ala. J. med. Sci. 4, 368–380 (1967).

    Google Scholar 

  • —: The structure of the forebrain of Bufo marinus. Ala. J. med. Sci. 3, 286–298 (1966).

    Google Scholar 

  • Howell, E. M., Hoffman, H. H.: The forebrain of Hyla cinerea. Ala. J. med. Sci. 3, 270–285 (1966).

    Google Scholar 

  • Hume, D. M.: Hypothalamic localization for the control of various endocrine secretions. In: Reticular formation of the brain (ed. H. H. Jasper et al.), Henry Ford Hospital Intern. Symposium, p. 231–248. London: Churchill 1957.

    Google Scholar 

  • Ito, H.: The receptor in the ventricular wall of the reptilian brain. J. Hirnforsch. 6, 333–337 (1964).

    Google Scholar 

  • Iturriza, F. C.: Monoamines and control of the pars intermedia of the toad pituitary. Gen. comp. Endocr. 6, 19–25 (1966).

    Google Scholar 

  • Kappers, C., Ariëns, U., Huber, G. C., Crosby, E. C.: The comparative anatomy of the nervous system of vertebrates, including man. New York: Hafner Publ. Co. 1960.

    Google Scholar 

  • Kemali, M., Braitenberg, V.: Atlas of the frogs brain. Berlin-Heidelberg-New York: Springer 1969.

    Google Scholar 

  • Klüver, H., Barrera, E.: A method for the combined staining of cells and fibers in the nervous system. J. Neuropath. exp. Neurol. 12, 400–403 (1953).

    Google Scholar 

  • Knapp, H., Scalia, F., Riss, W.: The optic tracts of Rana pipiens. Acta neurol. scand. 41, 325–355 (1965).

    Google Scholar 

  • Koella, W. P., Ozicman, J.: Mechanism of the EEG synchronizing action of serotonin. Amer. J. Physiol. 211, 926–934 (1966).

    Google Scholar 

  • Kolmer, W.: Das Sagittalorgan der Wirbeltiere. Z. Anat. Entwickl.-Gesch. 60, 652–717 (1921).

    Google Scholar 

  • —: Über das Sagittalorgan, ein zentrales Sinnesorgan der Wirbeltiere, insbesondere beim Affen. Z. Zellforsch. 13, 236–248 (1931).

    Google Scholar 

  • Kuhlenbeck, H., Malewitz, T. D., Beasley, A. B.: Further observations on the morphology of the forebrain in Gymnophiona, with reference to the topologic vertebrate forebrain pattern. In: Evolution of the forebrain (ed. R. Hassler und H, Stephan), p. 9–19. Stuttgart: Thieme 1966.

    Google Scholar 

  • Legait, E.: Les organes épendymaires du troisième ventricule (L'organe sous-commissural, l'organe sub-fornical, l'organe paraventriculaire). Thèse. Nancy: G. Thomas 1942.

    Google Scholar 

  • Leonhardt, H.: Zur Frage einer intraventriculären Neurosekretion. Eine bisher unbekannte nervöse Struktur im IV. Ventrikel des Kaninchens. Z. Zellforsch. 79, 172–184 (1967).

    Google Scholar 

  • —: Intraventrikuläre markhaltige Nervenfasern nahe der Apertura lateralis ventriculi quarti des Kaninchengehirns. Z. Zellforsch. 84, 1–8 (1968).

    Google Scholar 

  • —: Bukettförmige Strukturen im Ependym der Regio hypothalamica des III. Ventrikels beim Kaninchen. Z. Zellforsch. 88, 297–317 (1968).

    Google Scholar 

  • - Neurosekretorische Strukturen im IV. Ventrikel und Zentralkanal beim Kaninchen. Anat. Anz., Erg.-Bd., 95–102 (1968).

  • —, Lindner, E.: Marklose Nervenfasern im III. und IV. Ventrikel des Kaninchen- und Katzengehirns. Z. Zellforsch. 78, 1–18 (1967).

    Google Scholar 

  • —, Prien, H.: Eine weitere Art intraventrikulärer kolbenförmiger Axonendigungen aus dem IV. Ventrikel des Kaninchengehirns. Z. Zellforsch. 92, 394–399 (1968).

    Google Scholar 

  • Lindsley, D. B., Bowden, J. W., Magoun, H. W.: Effect upon the EEG of acute injury to the brain stem activating system. Electroenceph. clin. Neurophysiol. 1, 475–486 (1949).

    Google Scholar 

  • —, Schreiner, L. H., Knowles, W. B., Magoun, H. W.: Behavioral and EEG changes following chronic brain stem lesions in the cat. Electroenceph. clin. Neurophysiol. 2, 483–498 (1950).

    Google Scholar 

  • Maturana, H. R., Lettvin, J. Y., McCulloch, W. S., Pitts, W. H.: Anatomy and physiology of vision in the frog (Rana pipiens). J. gen. Physiol. 43, 129–176 (1959–60).

    Google Scholar 

  • Mitchell, R.: Connections of the habenula and of the interpeduncular nucleus in the cat. J. comp. Neurol. 121, 441–457 (1963).

    Google Scholar 

  • Moruzzi, G.: Reticular influences on the EEG. Electroenceph. clin. Neurophysiol. 16, 2–17 (1964).

    Google Scholar 

  • —, Magoun, H. W.: Brain stem reticular formation and activation of the EEG. Electroenceph. clin. Neurophysiol. 1, 455–473 (1949).

    Google Scholar 

  • Nicholls, G. E.: Some experiments on the nature and function of Reissner's fibre. J. comp. Neurol. 27, 117–191 (1917).

    Google Scholar 

  • Noda, H., Sano, Y., Nakamoto, T.: Über den Eintritt des hypothalamischen Neurosekretes in den III. Ventrikel. Arch. hist. jap. 8, 355–360 (1955).

    Google Scholar 

  • Öztan, N.: Neurosecretory processes projecting from the preoptic nucleus into the third ventricle of Zoarces viviparus L. Z. Zellforsch. 80, 458–460 (1967).

    Google Scholar 

  • Olds, J.: Self-stimulation experiments and differentiated reward systems. In: Reticular formation of the brain, (ed. H. H. Jasper, L. D. Proctor, R. S. Knighton, W. C. Noshay, and R. T. Costello) Henry Ford Hospital Intern. Symposium, p. 671–687. London: Churchill 1957.

    Google Scholar 

  • —, Peretz, B.: A motivational analysis of the reticular activating system. Electroenceph. clin. Neurophysiol. 12, 445–454 (1960).

    Google Scholar 

  • Papez, J. W.: Thalamus in turtle and thalamic evolution. J. comp. Neurol. 61, 433–475 (1935).

    Google Scholar 

  • —: The visceral brain, its components and connections. In: Reticular formation of the brain (ed. H. H. Jasper et al.) Henry Ford Hospital Intern. Symposium, p. 591–605. London: Churchill 1957.

    Google Scholar 

  • Paul, E.: Über die Typen der Ependymzellen und ihre regionale Verteilung bei Rana temporaria L. Mit Bemerkungen über die Tanycytenglia. Z. Zellforsch. 80, 461–487 (1967).

    Google Scholar 

  • Pehlemann, F. W.: Zilientragende Nervenendigungen im Bereich des dritten Ventrikels von Anuren. Verhandl. Int. Symposium Circumventrikuläre Organe und Liquor. Reinhardsbrunn 1968. Jena: Fischer 1969.

    Google Scholar 

  • Pesonen, N.: Über die intraependymalen Nervenelemente. Anat. Anz. 90, 193–223 (1940).

    Google Scholar 

  • Petsche, H., Gogolak, G., Zwieten, P. A. van: Rhythmicity of septal cell discharges at various levels of reticular excitation. Electroenceph. clin. Neurophysiol. 19, 25–33 (1965).

    Google Scholar 

  • —, Stumpf, Ch., Gogolak, G.: The significance of the rabbits septum as a relay station between the midbrain and the hippocampus. I.: The control of hippocampus arousal activity by the septum cells. Electroenceph. clin. Neurophysiol. 14, 202–211 (1962).

    Google Scholar 

  • Petsche, H., Stumpf, Ch., Gogolak, G.: The significance of the rabbits septum as a relay station between the midbrain and the hippocampus. I: The control of hippocampus arousal activity by the septum cells. Electroenceph. clin. Neurophysiol. 14, 202–211 (1962).

    Google Scholar 

  • Raisman, G.: The connexions of the septum. Brain 89, 317–348 (1966).

    Google Scholar 

  • —: A comparison of the mode of termination of the hippocampal and hypothalamic afferents to the septal nuclei as revealed by electron microscopy of degeneration. Exp. Brain Bes. 7, 317–343 (1969).

    Google Scholar 

  • Ramon, P.: Estructura del encefalo del cameleon. Riv. trimestr. micrograf. 1, 46 (1896). Zit. nach Kappers, Huber und Crosby, 1960.

    Google Scholar 

  • Ridley, A.: Secretion in the brain of Raua castesbeiana and its modification by osmotic stress and hypophysectomy. Gen. comp. Endocr. 4, 486–491 (1964).

    Google Scholar 

  • Rinne, U. K.: Ultrastructure of the median eminence of the rat. Z. Zellforsch. 74, 98–122 (1966).

    Google Scholar 

  • Riss, W., Halpern, M., Scalia, F.: Anatomical aspects of the evolution of the limbic and olfactory systems and their potential significance for behavior. N. Y. Acad. Sci. Div. Psychol. (1967).

  • —, Knapp, H. D., Scalia, P.: Optic pathways in Cryptobranchus allegheniensis as revealed by the Nauta technique. J. comp. Neurol. 121, 31–43 (1963).

    Google Scholar 

  • Rodriguez, E. M.: Neurosecretory system of the toad Bufo arenarum Hensel and its changes during inanition. Gen. comp. Endocr. 4, 684–695 (1964).

    Google Scholar 

  • Röhlich, P., Vigh, B.: Electron microscopy of the paraventricular organ in the sparrow (Passer domesticus) Z. Zellforsch. 80, 229–245 (1967).

    Google Scholar 

  • Romeis, B.: Mikroskopische Technik, 16. Aufl. München: Leibniz 1968.

    Google Scholar 

  • Sawyer, Ch. H.: Activation and blockade of the release of pituitary gonadotropin as influenced by the reticular formation. In: Reticular formation of the brain. (ed. H. H. Jasper et al.). Henry Ford Hospital Intern. Symposium, p. 223–230 London: Churchill 1957.

    Google Scholar 

  • —: Stimulation of ovulation in the rabbit by intraventricular injection of epinephrine or norepinephrine. Anat. Rec. 112, 385 (Abstr. Nr 51) (1952).

    Google Scholar 

  • Scharrer, E., Scharrer, B.: Neurosekretion. In: Handbuch der mikroskopischen Anatomie des Menschen, Bd. VI/5, hrsg. von W. Bargmann. Berlin-Göttingen-Heidelberg: Springer 1954.

    Google Scholar 

  • Schnitzlein, H. W., Hoffman, H. H., Hamel, E. G., Ferrer, N. C.: Parallelisms in fiber relations and variations in nuclear patterns in the phylogeny of the amygdala. Arch. mex. Anat. 26, 3–13 (1967).

    Google Scholar 

  • Schober, W.: Vergleichende Betrachtungen am Telencephalon niederer Wirbeltiere. In: Evolution of the forebrain (ed. R. Hassler und H. Stephan), p. 20–31. Stuttgart: Thieme 1966.

    Google Scholar 

  • Seto, H., Funahashi, K.: Human ependyma as a sensory organ. Arch. hist. jap. 7, 131–141 (1955).

    Google Scholar 

  • Sharp, P. J., Follet, B. K.: The distribution of monoamines in the hypothalamus of the Japanese quail, Coturnix coturnix japonica. Z. Zellforsch. 90, 245–262 (1968).

    Google Scholar 

  • Starck, D.: Die Evolution des Säugetier-Gehirns. Wiesbaden: F. Steiner 1962.

    Google Scholar 

  • Stephan, H.: Größenänderungen im olfaktorischen und limbischen System während der phylogenetischen Entwicklung der Primaten. In: Evolution of the forebrain (ed. B. Hassler und H. Stephan), p. 377–388. Stuttgart: Thieme 1966.

    Google Scholar 

  • — Andy, O. J.: Cytoarchitectonics of the septal nuclei in old world monkeys (Cercopithecus and Colobus). J. Hirnforsch. 7, 1–23 (1964).

    Google Scholar 

  • —: The septum (a comparative study of its size in insectivores and primates). J. Hirnforsch. 5, 229–244 (1962).

    Google Scholar 

  • Sterba, G.: Fluoreszenzmikroskopische Untersuchungen über die Neurosekretion beim Bachneunauge (Lampetra planeri Bloch). Z. Zellforsch. 55, 763–789 (1961).

    Google Scholar 

  • — Weiss, J.: Beiträge zur Hydrencephalokrinie: I. Hypothalamische Hydrencephalokrinie der Bachforelle (Salmo trutta fario). J. Hirnforsch. 9, 359–371 (1967).

    Google Scholar 

  • Ströer, W. F. H.: Zur vergleichenden Anatomie des primären optischen Systems bei Wirbeltieren. Z. Anat. entwickl.-Gesch. 110, 301–321 (1940).

    Google Scholar 

  • Studnička, F. K.: Untersuchungen über den Bau des Ependyms der nervösen Zentralorgane. Anat. H. 15, 303–430 (1900).

    Google Scholar 

  • Stumpf, Ch., Petsche, H., Gogolak, G.: The significance of the rabbits septum as a relay station between the midbrain and the hippocampus. II. The differential influence of drugs upon both the septal cell firing pattern and the hippocampus theta activity. Electroenceph. clin. Neurophysiol. 14, 212–219 (1962).

    Google Scholar 

  • Takeichi, M.: The fine structure of ependymal cells. II. An electron microscopic study of the soft-shelled turtle paraventricular organ, with special reference to the fine structure of ependymal cells and so-called albuminous substance. Z. Zellforsch. 76, 471–485 (1967).

    Google Scholar 

  • Teichmann, I., Vigh, B., Aros, B.: Histochemical studies on Gomori-positive substances. V: Gomori-positive material in the paraventricular organ of various vertebrates. Acta biol. Acad. Sci. hung. 19, 163–179 (1968).

    Google Scholar 

  • Thompson, R., Rich, I.: Transitory behavioral effects of interpeduncular nucleus damage. Exp. Neurol. 4, 310–316 (1961).

    Google Scholar 

  • Torda, C.: Effect of depletion of brain serotonin on sleep in rats. Brain Res. 6, 375–377 (1967).

    Google Scholar 

  • —: Effect of changes of brain norepinephrine content on sleep cycle in rat. Brain Res. 10, 200–207 (1968).

    Google Scholar 

  • Tretjakoff, D.: Das Nervensystem von Ammocoetes. II: Das Gehirn. Arch. mikr. Anat. 73, 607–680 (1909).

    Google Scholar 

  • Vigh, B., Majorossy, K.: The nucleus of the paraventricular organ and its fibre connections in the domestic fowl (Gallus domesticus). Acta biol. Acad. Sci. hung. 19, 181–192 (1968).

    Google Scholar 

  • —, Tar, E., Teichmann, I.: The development of the paraventricular organ in the white leghorn chicken. Acta biol. Acad. Sci. hung. 19, 215–225 (1968).

    Google Scholar 

  • —, Teichmann, I., Aros, B.: The “nucleus organi paraventricularis” a neuronal part of the paraventricular ependymal organ. A comparative study in various vertebrates. Acta biol. Acad. Sci. hung. 18, 271–284 (1967).

    Google Scholar 

  • Wilkinson, H. A., Peele, T. L.: Intracranial self-stimulation in cats. J. comp. Neurol. 121, 425–440 (1963).

    Google Scholar 

  • Wilson, L. D., Weinberg, J. A., Bern, H. A.: The hypothalamic neurosecretory system of the tree frog Hyla regilla. J. comp. neurol. 107, 253–267 (1957).

    Google Scholar 

  • Wittkowski, W.: Elektronenmikroskopische Studien zur intraventriculären Neurosekretion in den Recessus infundibularis der Maus. Z. Zellforsch. 92, 207–216 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Mit dankenswerter Unterstützung durch die Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braak, H. Biogene Amine im Gehirn vom Frosch (Rana esculenta). Z. Zellforsch. 106, 269–308 (1970). https://doi.org/10.1007/BF00335743

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00335743

Key-Words

Navigation