Skip to main content
Log in

Degeneration and regeneration in the insect central nervous system. II

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

  1. 1.

    When the neck connective of Sphodromantis is cut in two places posterior to the suboesophageal ganglion and anterior to the prothoracic ganglion, 100% of the axons in the isolated piece of tissue are degenerating by the second day after injury, and the connective is phagocytosed.

  2. 2.

    In contrast, if a neck connective of Schistocerca or Sphodromantis is cut once between the ganglia, only 2% of the axons degenerate rapidly, the remainder show non-degenerative reactive changes.

  3. 3.

    Approximately 2% of the reactive axons contain osmiophilic granules 30–100 mμ in diameter which are not seen in undamaged axons. This granular material is also present in regenerating axons up to one week after injury. Neurosecretory-stains colour axons in the connective. These axons have a distribution and frequency corresponding to those found in electronmicrographs to contain the granular material.

  4. 4.

    It is suggested that the granular secretion is produced in response to injury in some axons which are connected to their perikaryon. The material may act as an inhibitor to phagocytosis and to axon degeneration, and possibly also stimulate axon regeneration.

  5. 5.

    The results and hypothesis are discussed in relation to previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arsdall, G. B. Van, and T. L. Lentz: Secretory activity during limb regeneration and induction in the newt. Science 162, 1296–1298 (1968).

    Google Scholar 

  • Bern, H. A.: Neurosecretion and neuroendocrine integration. In: S.E.B. Symposia XX, Nervous and hormonal mechanisms of integration, p. 325–344. Cambridge: At the University Press 1966.

    Google Scholar 

  • —, and I. R. Hagadorn: Neurosecretion. In: Structure and function in the nervous systems of invertebrates 1., p. 353–429 (T. H. Bullock and G. A. Horridge). San Francisco: W. H. Freeman 1965.

    Google Scholar 

  • Bodenstein, D.: Studies on nerve regeneration in Periplaneta americana. J. exp. Zool. 136, 89–116 (1957).

    Google Scholar 

  • Boulton, P. S.: Degeneration and regeneration in the insect central nervous system 1. Z. Zellforsch. 101, 98–118 (1969).

    Google Scholar 

  • Brady, J., and S. H. P. Maddrell: Neurohaemal organs in the medial nervous system of insects. Z. Zellforsch. 76, 389–404 (1967).

    Google Scholar 

  • Clark, R. B.: Problems of interpreting neurosecretory phenomena in annelids. J. Endocr. 26, XVIII-XIX (1963).

    Google Scholar 

  • —, and D. G. Bonney: Influence of the supraoesophageal ganglion on posterior regeneration in Nereis diversicolor. J. Embryol. exp. Morph. 8, 112–118 (1960).

    Google Scholar 

  • —, and R. Ruston: Time of release and action of a hormone influencing regeneration in the polychaete Nereis diversicolor. Gen. comp. Endocr. 3, 542–553 (1963).

    Google Scholar 

  • Coggeshall, R. E.: A light and electronmicroscope study of the abdominal ganglion of Aplysia californica. J. Neurophysiol. 30, 1263–1287 (1967).

    Google Scholar 

  • Delphin, F.: Histology and possible functions of neurosecretory cells in the ventral ganglia of Schistocerca gregaria Forsk. Nature (Lond.) 200, 913–915 (1963).

    Google Scholar 

  • —: The histology and possible functions of neurosecretory cells in the ventral ganglia of Schistocerca gregaria Forskal (Orthoptera: Acrididae). Trans. roy. ent. Soc. Lond. 117, 167–214 (1965).

    Google Scholar 

  • —: A new differential staining technique for neurosecretory substances. Union of Burma. J. Life Sci. 1, 26–27 (1968).

    Google Scholar 

  • Ewen, A. B.: An improved aldehyde fuchsin staining technique for neurosecretory products in insects. Trans. Amer. micr. Soc. 81, 94–96 (1962).

    Google Scholar 

  • Farley, R. D., and N. S. Milburn: Structure and function of the giant fibre system in the cockroach Periplaneta americana. J. Insect Physiol. 15, 457–476 (1969).

    Google Scholar 

  • Fletcher, B. S.: The diversity of cell types in the neurosecretory system of the beetle Blaps mucronata. J. Insect Physiol. 15, 119–134 (1969).

    Google Scholar 

  • Füller, H. B.: Zool. Jb., Abt. allg. Zool. u. Physiol. 69, 223 (1960).

    Google Scholar 

  • Golding, D. W.: The diversity of secretory neurones in the brain of Nereis. Z. Zellforsch. 82, 321–344 (1967).

    Google Scholar 

  • Harker, J. E.: Endocrine and nervous factors controlling the suboesophageal ganglion neurosecretory cycle in Periplaneta americana L. J. exp. Biol. 37, 164–170 (1960c).

    Google Scholar 

  • Hess, A.: Experimental anatomical studies of pathways in the severed central nerve cord of the cockroach. J. Morph. 103, 479–502 (1958c).

    Google Scholar 

  • Hoy, R. R., G. D. Bittner, and D. Kennedy: Regeneration in crustacean motoneurons; evidence for axonal fusion. Science 156, 251–252 (1967).

    Google Scholar 

  • Jacklet, J. W., and M. J. Cohen: Nerve regeneration: Correlation of electrical, histological and behavioural events. Science 156, 1640–1643 (1967).

    Google Scholar 

  • Johnson, B.: Neurosecretion and the transport of secretory material from the Corpora cardiaca in aphids. Nature (Lond.) 196, 1338–1339 (1962).

    Google Scholar 

  • Landolt, A. M.: Electronenmikroskopische Untersuchungen an der Zellkörperschicht der Corpora pedunculata von Waldameisen (Formica lugubris Zell.) mit besonderer Berücksichtigung der Neuron-Glia-Beziehung. Z. Zellforsch. 66, 701–736 (1965).

    Google Scholar 

  • Lentz, T. L.: Hydra; Induction of supernumery heads by isolated neurosecretory granules. Science 150, 633–635 (1965).

    Google Scholar 

  • —: Fine structure of nerves in the regenerating limb of the newt Triturus. Amer. J. Anat. 121, 647–670 (1967a).

    Google Scholar 

  • —: Fine structure of sensory ganglion cells during limb regeneration of the newt Triturus. J. comp. Neurol. 131, 301–322 (1967b).

    Google Scholar 

  • Maddrell, S. H. P.: The site of release of the diuretic hormone in Rhodnius — a new neurohaemal system in insects. J. exp. Biol. 45, 499–507 (1966).

    Google Scholar 

  • Mancini, G., and N. Frontali: Fine structure of the mushroom body neuropile of the brain of the roach, Periplaneta americana. Z. Zellforsch. 83, 334–343 (1967).

    Google Scholar 

  • Melamed, J., and O. Trujillo-Cenóz: Electronmicroscopic observations on the reactional changes occuring in insect nerve fibres after transection. Z. Zellforsch. 59, 851–856 (1963).

    Google Scholar 

  • Pipa, R. L.: Insect neurometamorphosis. III. Nerve cord shortening in a moth, Galleria mellonella (L) may be accomplished by humoral potentiation of neuroglial motility. J. exp. Zool. 164, 47–60 (1967).

    Google Scholar 

  • Rowell, C. H. F., and A. E. Dorey: The number and size of axons in the thoracic connectives of the desert locust Schistocerca gregaria Forsk. Z. Zellforsch. 83, 288–294 (1967).

    Google Scholar 

  • Usherwood, P. N. R.: Responses of insect muscle to denervation. 1. Resting potential changes. J. Insect Physiol. 9, 247–255 (1963).

    Google Scholar 

  • Wigglesworth, V. B.: Homeostasis in insect growth. In: S.E.B. Symposium XVIII, Homeostasis and feedback mechanisms, p. 265–282 Cambridge: At the University Press 1964.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by a “Study and Serve” grant from the British Government, and a grant from the Worshipful Company of Goldsmiths.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boulton, P.S., Rowell, C.H.F. Degeneration and regeneration in the insect central nervous system. II. Z. Zellforsch. 101, 119–134 (1969). https://doi.org/10.1007/BF00335589

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00335589

Key-Words

Navigation