Skip to main content
Log in

Studies on the stability and decomposition of the Hagedorn-oxime HLö 7 in aqueous solution

  • Original Investigations
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

HLö 7, (pyridinium, 1-[[[4-(aminoarbonyl)pyridinio]methoxy]methyl]-2,4-bis-[(hydroxyimino)methyl] diiodide) has been shown to be efficacious in soman poisoning of mice, even in the absence of atropine. To assess possible risks involved in the administration of HLö 7 its degradation products were analyzed at pH 2.5 and pH 7.4, respectively. At pH 2.5, where HLö 7 in aqueous solution was assumed to possess maximal stability, the predicted shelf life (10% decomposition) was about 8 years for 10 mM solutions at 8° C. The apparent energy of activation was 117 kJ/mol. At pH 2.5, attack on the aminal-acetal bond predominated with formation of pyridine-2,4-dialdoxime, 2-cyanopyridine-4-aldoxime, isonicotinamide, and formaldehyde. At pH 7.4, primary attack on the 2-aldoxime group resulted in formation of an intermediate 2-cyano-4-aldoxime derivative which mainly decomposed into cyanide and the corresponding 2-pyridinone, 1-[[[4-(aminocarbonyl)-pyridinio] methoxy]methyl]-4-[(hydroxyimino)methyl] diiodide. In addition, liberated cyanide reacted with the intermediate 2-cyano-4-aldoxime derivative with formation of 2-pyridinone, 1-[[[4-(aminocarbonyl)-pyridinio]-methoxy] methyl]-6-cyano-4-[(hydroxyimino)methyl] diiodide. This cyanide sequestering pathway became significant only at high concentrations (10 mM) of HLö 7, and was marginal at 1 mM HLö 7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bodenhausen G, Kogler H, Ernst RR (1984) Selection of coherence-transfer pathways in NMR pulse experiments. J Magn Res 58: 370–388

    Google Scholar 

  • Boskovic B, Kovacevic V, Jovanovic D (1984) PAM-2 Cl, HI 6 and HGG 12 in soman and tabun poisoning. Fund Appl Toxicol 4(2): 106–115

    Google Scholar 

  • Christenson I (1972) Hydrolysis of obidoxime chloride (Toxogonin) III. Kinetics in neutral and alkaline solution. Acta Pharm Suec 9: 309–322

    Google Scholar 

  • Christenson I (1968)a Hydrolysis of bis-(4-hydroxiiminomethyl)ether dichloride (Toxogonin) Acta Pharm Suec 5: 23–36

    Google Scholar 

  • Christenson I (1968)b Hydrolysis of bis-(4-hydroxiiminomethyl)ether dichloride (Toxogonin) II. Kinetics and equilibrium in acidic solution. Acta Pharm Suec 5: 249–262

    Google Scholar 

  • Clement JG (1981) Toxicology and pharmacology of bis-pyridinium oximes. Insight into the mechanism of action vs soman poisoning in vivo. Fund Appl Toxicol 1(2): 193–202

    Google Scholar 

  • Clement JG (1982) HI 6: Reactivation of central and peripheral acetylcholinesterase following inhibition by soman, sarin and tabun in vivo in the rat. Biochem Pharmacol 31(7): 1283–1287

    Google Scholar 

  • Clement JG (1983) Efficacy of mono and bis-pyridinium oximes versus soman, sarin and tabun poisoning in mice. Fund Appl Toxicol 3(6): 533–535

    Google Scholar 

  • Clement JG, Shiloff DJ, Gennings C (1987) Efficacy of a combination of acetylcholinesterase reactivators, HI 6 and obidoxime, against tabun and soman poisoning of mice. Arch Toxicol (1987) 61: 70–75

    Google Scholar 

  • Ellin RI (1958) Stability of pyridine-2-aldoxime methiodide I. Mechanism of breakdown in alkaline solution. J Am Chem Soc 80: 6588–6590

    Google Scholar 

  • Ellin RI, Carlese JS, Kondritzer AA (1962) Stability of pyridine-2-aldoxime methiodide II. Kinetics of deterioration in dilute aqueous solution. J Pharm Sci 51: 141–146

    Google Scholar 

  • Eyer P, Hell W (1985) Chemical stability of the Hagedorn oximes HGG 12 and HI 6. Arch Pharm 318: 938–946

    Google Scholar 

  • Eyer P, Hell W (1986) Untersuchung des Zerfalls von HGG 12 in wässriger Lösung. Arch Pharm 319: 558–566

    Google Scholar 

  • Eyer P, Hell W, Kawan A, Klehr H (1986) Studies on the decomposition of the oxime HI 6 in aqueous solution. Arch Toxicol 59: 266–271

    Google Scholar 

  • Eyer P, Kawan A, Ladstetter B (1987) Formation of cyanide after i.v. administration of the oxime HI 6 to dogs. Arch Toxicol 61: 63–69

    Google Scholar 

  • Eyer P, Hagedorn I, Ladstetter B (1988) Study on the stability of the oxime HI 6 in aqueous solution. Arch Toxicol 62: 224–226

    Google Scholar 

  • Gündel WH (1980) Notiz über Pseudobasen aus Pyridinium-alkoxiden. Liebigs Ann Chem 1350–1380

  • Gündel WH (1981) Untersuchungen an quartären Pyridinium-Salzen, XIV [1] Dihydropyridyl-oximether. Z Naturforsch 36b: 1031–1036

    Google Scholar 

  • Gündel WH (1983) Untersuchungen an quartären PyridiniumSalzen, XV [1] Pseudobasen und Redoxprodukte bei der Umsetzung von Pyridinium-Salzen mit Alkoholat. Z Naturforsch 38b: 873–883

    Google Scholar 

  • Hagedorn I, Stark I, Lorenz HP (1972) Reaktivierung phosphorylierter Acetylcholinesterase. Abhängigkeit von der Aktivatoracidität. Angew Chem 84: 354–356

    Google Scholar 

  • de Jong LPA, Wolring GZ (1984) Stereospecific reactivation by some Hagedorn oximes of acetylcholinesterase from various species including man, inhibited by soman. Biochem Pharmacol 33(7): 1119–1125

    Google Scholar 

  • Kuhnen H, Schrichten A, Schoene K (1985) Influence of atropine upon ageing and reactivation of soman inhibited acetylcholinesterase from human erythrocytes. Arzneimittelforsch 35(9): 1454–1456

    Google Scholar 

  • Löffler M (1986) Quartäre Salze von Pyridin-2,4-dialdoxim als Gegenmittel für Organophosphatvergiftungen. Thesis, Freiburg/FRG

  • Lundy PM, Shih TM (1983) Examination of the role of central cholinergic mechanism in the therapeutic effects of HI 6 in organophosphate poisoning. J Neurochem 40(5): 1321–1328

    Google Scholar 

  • Marcov V, Rakin D, Binenfeld Z (1984) Hidroliza 1-(2-hidroksiiminometil-1-piridinijum)-3-(4-karbamoil-1-piridinijum)-2-oksapropan dihlorida (HI 6). Ispitivanje, stabilnosti vodenih rastvora. Naucno-technicki Pregled 34: 19–24

    Google Scholar 

  • Pilipovic I, Vucusic I (1983) Stability of the oxime HI 6 in acidic solutions. Abstract of the Second International Meeting on Cholinesterases, Bled

  • Sket D, Brzin M (1986) Effects of HI 6 applied into the cerebral ventricles, on the inhibition of brain acetylcholinesterase by soman in rats. Neuropharmacology 25(1): 103–107

    Google Scholar 

  • Stark I (1971) Reaktivierung phosphorylierter Acetylcholinesterase mit quarternierten Pyridinaldoximen: Ermittlung eines Zusammenhangs zwischen Oximacidität und Reaktivierungsvermögen. Thesis, Freiburg/FRG

  • Wolthuis OL, Vanwersch RAP, van der Wiel HJ (1981) The efficacy of some bis-pyridinium oximes as antidotes to soman in isolated muscles of various species including man. Eur J Pharmacol 70(30): 355–369

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Part of PhD-Thesis, Universität München

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eyer, P., Ladstetter, B., Schäfer, W. et al. Studies on the stability and decomposition of the Hagedorn-oxime HLö 7 in aqueous solution. Arch Toxicol 63, 59–67 (1989). https://doi.org/10.1007/BF00334636

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00334636

Key words

Navigation