Skip to main content
Log in

Isolation and nucleotide sequence of the hemA gene of Escherichia coli K12

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The hemA gene of Escherichia coli K12 was cloned by complementation of a hemA mutant of this organism. Subcloning of the initial 6.0 kb HindIII fragment allowed the isolation of a 1.5 kb NheI-AvaI fragment which retained the ability to complement the hemA mutant. DNA sequencing by the dideoxy chain terminator method of Sanger showed the presence of an open reading frame (ORF) of 1254 nucleotides, which ends 6 nucleotides beyond the AvaI site. Primer extension experiments showed the existence of a putative transcription initiation site for the hemA gene, located at position 130. A possible promoter sequence was identified upstream from this transcription initiation site, and its functional activity was confirmed by the use of the pK01 promoter-probe vector. Protein synthesis in an in vitro coupled transcription-translation system showed a 46 kDa protein, which corresponds to the mol. wt. of the hemA protein, as deduced from the nucleotide sequence of the gene. No homology was found between the amino acid sequence of the hemA protein of E. coli K12 and known sequences of other Δ-aminolevulinic acid synthases (Δ-ALAS), suggesting that this protein is different from other Δ-ALAS enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiba H, Adhya S, Crombrugghe de B (1981) Evidence for two functional gal promoters in intact Escherichia coli cells. J Biol Chem 256:11905–11910

    Google Scholar 

  • Aldrich TL, Chakrabarty AM (1988) Transcriptional regulation, nucleotide sequence, and localization of promoter of the catBC operon in Pseudomonas putida. J Bacteriol170:1297–1304

    Google Scholar 

  • Arrese M, Carvajal E, Robison S, Sambunaris A, Panek A, Mattoon J (1983) Cloning of the 5-aminolevulinic acid synthase structural gene in yeast. Curr Genet 7:175–183

    Google Scholar 

  • Bard M, Ingolia TD (1984) Plasmid-mediated complementation of a 5-aminolevulinic acid-requiring Saccharomyces cerevisiae mutant. Gene 28:195–199

    Google Scholar 

  • Bawden MJ, Borthwick IA, Healy HM, Morris CP, May BK, Elliott WH (1987) Sequence of human 5-aminolevulinate synthase cDNA. Nucleic Acids Res 15:8563

    Google Scholar 

  • Castelfranco PA, Beale SI (1983) Chlorophyll biosynthesis: recent advances and areas of current interest. Annu Rev Plant Physiol 34:241–278

    Google Scholar 

  • Echelard Y, Dymetryszyn J, Drolet M, Sasarman A (1988) Nucleotide sequence of the hemB gene of Escherichia coli K-12. Mol Gen Genet 214:503–508

    Google Scholar 

  • Falk JE (1964) Porphyrins and metalloporphyrins. Elsevier, Amsterdam

    Google Scholar 

  • Gajdos A, Gajdos-Torok M (1969) Porphyrines et porphyries. Masson, Paris

    Google Scholar 

  • Granick S, Beale SI (1978) Hemes, chlorophylls, and related compounds: biosynthesis and metabolic regulation. Adv Enzymol 46:33–203

    Google Scholar 

  • Jacobs NJ (1974) Biosynthesis of heme. In: Neilands JB (ed) Microbial iron metabolism. Academic Press, New York, pp 125–148

    Google Scholar 

  • Kikuchi G, Hayashi N (1981) Regulation by heme of synthesis and intracellular translocation of Δ-aminolevulinate synthase in the liver. Mol Cell Biochem 37:27–41

    Google Scholar 

  • Lascelles J (1975) The regulation of heme and chlorophyll synthesis in bacteria. Ann NY Acad Sci 244:334–347

    Google Scholar 

  • Leong SA, Williams PH, Ditta GS (1985) Analysis of the 5′ regulatory region of the gene for Δ-aminolevulinic acid synthetase of Rhizobium meliloti. Nucleic Acids Res 13:5965–5976

    Google Scholar 

  • Li JM, Umanoff H, Proenca R, Russell CS, Cosloy SD (1988) Cloning of the Escherichia coli K-12 hemB gene. J Bacteriol 170:1021–1025

    Google Scholar 

  • Maguire DJ, Day AR, Borthwick IA, Srivastava G, Wigley PL, May BK, Elliott WH (1986) Nucleotide sequence of the chicken 5-aminolevulinate synthase gene. Nucleic Acids Res 14:1379–1391

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Mauzerall D, Granick S (1956) The occurrence and determination of 5-aminolevulinic acid and porphobilinogen in urine. J Biol Chem 219:435–446

    Google Scholar 

  • Mayer SM, Beale SI, Weinstein JD (1987) Enzymatic conversion of glutamate to Δ-aminolevulinic acid in soluble extracts of Euglena gracilis. J Biol Chem 262:12541–12549

    Google Scholar 

  • McConville ML, Charles HP (1979) Mutants of Escherichia coli K12 accumulating porphobilinogen: a new locus, hemC. J Gen Microbiol 111:193–200

    Google Scholar 

  • McKenney K, Shimatake H, Comb D, Schmeissner U, Brady C, Rosenberg M (1981) A system to study promoter and terminator signals recognized by Escherichia coli RNA polymerase. In: Chirikjian JG, Pappas TS (eds) Gene amplification and analysis, vol 2, Structural analysis of nucleic acids. Elsevier, New York, pp 383–415

    Google Scholar 

  • Neuberger A (1980) The regulation of chlorophyll and porphyrin biosynthesis. Int J Biochem 12:787–789

    Google Scholar 

  • Norrander J, Kempe T, Messing J (1983) Improved M13 vectors using oligonucleotide-directed mutagenesis. Gene 26:101–106

    Google Scholar 

  • Oh-hama T, Stolowich NJ, Scott AI (1988) 5-aminolevulinic acid formation from glutamate via the C5 pathway in Clostridium thermoaceticum. FEBS Lett 228:89–93

    Google Scholar 

  • O'Neil GP, Peterson DM, Schon A, Chen M-W, Soll D (1988) Formation of the chlorophyll precursor Δ-aminolevulinic acid in Cyanobacteria requires aminoacylation of a tRNAglu species. J Bacteriol 170:3810–3816

    Google Scholar 

  • Peloquin L (1987) Transposition du gène hemA à l'aide du bactériophage Mu et clonage du gène hemA de Salmonella typhimurium. Ph.D. Thesis, Université de Montréal

  • Robertson McClung C, Somerville JE, Guerinot ML, Chelm BK (1987) Structure of the Bradyrhizobium japonicum gene hemA encoding 5-aminolevulinic acid synthase. Gene 54:133–139

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Sasarman A, Surdeanu M, Horodniceanu T (1968) Locus determining the synthesis of Δ-aminolevulinic acid in E. coli K12. J Bacteriol 96:1882–1884

    Google Scholar 

  • Sasarman A, Sanderson KE, Surdeanu M, Sonea S (1970) Hemindeficient mutants of S. typhimurium. J Bacteriol 102:531–536

    Google Scholar 

  • Sasarman A, Nepveu A, Echelard Y, Dymetryszyn J, Drolet M, Goyer C (1987) Molecular cloning and sequencing of the hemD gene of Escherichia coli K12 and preliminary data on the Uro operon. J Bacteriol 169:4257–4262

    Google Scholar 

  • Schoenhaut DS, Curtis PJ (1986) Nucleotide sequence of mouse 5-aminolevulinic acid synthase cDNA and expression of its gene in hepatic and erythroid tissues. Gene 48:55–63

    Google Scholar 

  • Sinclair PR, Granick S (1975) Heme control of the synthesis of delta-aminolevulinic acid synthetase in cultured chick embryo liver cells. Ann NY Acad Sci 244:509–520

    Google Scholar 

  • Srivastava G, Borthwick IA, Maguire DJ, Elferink CJ, Bawden MJ, Mercer JFB, May BK (1988) Regulation of 5-aminolevulinate synthase mRNA in different rat tissues. J Biol Chem 263:5202–5209

    Google Scholar 

  • Thomas SD, Jordan PM (1986) Nucleotide sequence of the hemC locus encoding porphobilinogen deaminase of Escherichia coli K12. Nucleic Acids Res 14:6215–6226

    Google Scholar 

  • Toussaint A, Desmet L, VanGijsegem F, Faclen M (1981) Genetic analysis of mini-Mu containing F′pro-lac episomes after prophage induction. Mol Gen Genet 181:201–206

    Google Scholar 

  • Urban-Grimal D, Volland C, Garnier T, Dehoux P, Labbé-Bois R (1986) The nucleotide sequence of the HEM1 gene and evidence for a precursor form of the mitochondrial 5-aminolevulinate synthase in Saccharomyces cerevisiae. Eur J Biochem 156:511–519

    Google Scholar 

  • Vögtli M, Hütter R (1987) Characterization of the hydrostreptomycin phospho-transferase gene (sph) of Streptomyces glaucescens: nucleotide sequence and promoter analysis. Mol Gen Genet 208:195–203

    Google Scholar 

  • Yamamoto M, Hayashi M, Kikuchi G (1982) Evidence for the transcriptional inhibition by heme of the synthesis of 5-ALAS in rat liver. Biochem Biophys Res Commun 105:985–990

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by D.Y. Thomas

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drolet, M., Péloquin, L., Echelard, Y. et al. Isolation and nucleotide sequence of the hemA gene of Escherichia coli K12. Mol Gen Genet 216, 347–352 (1989). https://doi.org/10.1007/BF00334375

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00334375

Key words

Navigation