Skip to main content
Log in

Genetic and transfection studies with B. subtilis phage SP50

III. Biological effects of DNA cleavage and the physical basis of the map

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

A nonpermuted, unique marker arrangement in SP50 DNA was inferred from the finding that the genetic map could be dislinked at a specific site as a consequence of physical scission around the molecular center. In addition, colinearity of genetic marker sequence and physical order was evident. The established map was estimated to cover between 55 and 75% of the molecule. Density heterogeneity along the molecule was observed. The kinetics of shear-induced inactivation of transfecting molecules revealed that physical integrity of a DNA molecule was mandatory for its biological activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Biswal, N., Kleinschmidt, A. K., Spatz, H. Ch., Trautner, T. A.: Physical properties of the DNA of bacteriophage SP50. Molec. gen. Genet. 100, 39 (1967).

    Google Scholar 

  • Burgi, E., Hershey, A. D.: Sedimentation rate as a measure of molecular weight of DNA. Biophys. J. 3, 309 (1963).

    Google Scholar 

  • Cato, A., Guild, W. R.: Transformation and DNA size. I. Activity of fragments of defined size and a fit to a random double cross-over model. J. molec. Biol. 37, 157 (1968).

    Google Scholar 

  • Chen, K. C., Ravin, A. W.: Mechanism of the deoxyribonucleic acid helping effect during transformation. J. molec. Biol. 33, 873 (1968).

    Google Scholar 

  • Creeger, E. S., Spatz, H. Ch.: The anomalous shear lability of SP50 DNA. Molec. gen. Genet. 106, 25 (1969).

    Google Scholar 

  • Crothers, D. M., Zimm, B. H.: Viscosity and sedimentation of the DNA from bacteriophages T2 and T7 and the relation to molecular weight. J. molec. Biol. 12, 525 (1965).

    Google Scholar 

  • Davis, R. W., Hyman, R. W.: Physical locations of the in vitro RNA initiation site and termination sites of T7M DNA. Cold Spr. Harb. Symp. quant. Biol. 35, 263 (1970).

    Google Scholar 

  • Flamm, W. G., Bond, H. E., Burr, H. E.: Density-gradient centrifugation of DNA in a fixed-angle rotor. A higher order of resolution. Biochim. biophys. Acta (Amst.) 129, 310 (1966).

    Google Scholar 

  • Földes, J., Trautner, T. A.: Infectious DNA from a newly isolated B. subtilis phage. Z. Vererbungsl. 95, 57 (1964).

    Google Scholar 

  • Gilbert, W., Dressler, D.: DNA Replication: The rolling circle model. Cold Spr. Harb. Symp. quant. Biol. 33, 473 (1968).

    Google Scholar 

  • Green, D. M.: Intracellular inactivation of infective SP82 bacteriophage DNA. J. molec. Biol. 22, 1 (1966).

    Google Scholar 

  • Havender, W. R.: Recombinational and physical-chemical studies on the topography of the chromosome of B. subtilis bacteriophage SP50. Dissertation, University of California at Berkeley (1969).

  • Havender, W. R., Trautner, T. A.: Genetic and transfection studies with B. subtilis phage SP50. II. Temperature sensitive mutants and the establishment of a linkage map. Molec. gen. Genet. 108, 61 (1970).

    Google Scholar 

  • Hershey, A. D., Burgi, E., Davern, C. I.: Preparative density-gradient centrifugation of the molecular halves of lambda DNA. Biochem. biophys. Res. Commun. 18, 657 (1965).

    Google Scholar 

  • Herskowitz, I., Signer, E. R.: A site essential for expression of all late genes in bacteriophage λ. J. molec. Biol. 47, 545 (1970).

    Google Scholar 

  • Hogness, D. S., Simmons, J. R.: Breakage of λdg DNA: Chemical and genetic characterization of each isolated half-molecule. J. molec. Biol. 9, 411 (1964).

    Google Scholar 

  • Kaiser, A. D., Inman, R. B.: Cohesion and the biological activity of bacteriophage lambda DNA. J. molec. Biol. 13, 78 (1965).

    Google Scholar 

  • Klotz, G.: Direction of SPPI DNA replication after transfection. Abstracts of 1971 European Phage Meeting (Personal Communication).

  • Levinthal, C., Davison, P. F.: Degradation of deoxyribonucleic acid under hydrodynamic shearing forces. J. molec. Biol. 3, 674 (1961).

    Google Scholar 

  • McEwen, C. R.: Tables for estimating sedimentation through linear concentration gradients of sucrose solution. Analyt. Biochem. 20, 114 (1967).

    Google Scholar 

  • Milanesi, G., Brody, E. N., Grau, O., Geiduschek, E. P.: Transcriptions of the bacteriophage T4 template in vitro: Separation of “delayed early” from “immediate early” transcription. Proc. nat. Acad. Sci. (Wash.) 66, 181 (1970).

    Google Scholar 

  • Mosig, G., Revel, H.: Expression of genes in incomplete T4 genomes. Virology 31, 397 (1967).

    Google Scholar 

  • Reznikoff, W. S., Thomas, C. A.: The anatomy of the SP50 bacteriophage DNA molecule. Virology 37, 309 (1969).

    Google Scholar 

  • Riva, S., Cascino, A., Guiduschek, E. P.: Coupling of late transcription to viral replication in bacteriophage T4 development. J. molec. Biol. 54, 85 (1970).

    Google Scholar 

  • Rottländer, E., Trautner, T. A.: Genetic and transfection studies with B. subtilis phage SP50. I. Phage mutants with restricted growth on B. subtilis strain 168. Molec. gen. Genet. 108, 47 (1970).

    Google Scholar 

  • Schildkraut, C. L., Marmur, J., Doty, P.: Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J. molec. Biol. 4, 430 (1962).

    Google Scholar 

  • Schnös, M., Inman, R. B.: Position of branch points in replicating λ DNA. J. molec. Biol. 51, 61 (1970).

    Google Scholar 

  • Schnös, M., Inman, R. B.: Starting point and direction of replication in P2 DNA. J. molec. Biol. 55, 31 (1971).

    Google Scholar 

  • Skalka, A., Burgi, E., Hershey, A. D.: Segmental distribution of nucleotides in the DNA of bacteriophage lambda. J. molec. Biol. 34, 1 (1968).

    Google Scholar 

  • Spatz, H. Ch., Trautner, T. A.: The role of recombination in transfection of B. subtilis. Molec. gen. Genet. 113, (1971).

  • Spizizen, J.: Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc. nat. Acad. Sci. (Wash.) 44, 1072 (1958).

    Google Scholar 

  • Studier, F. W.: Sedimentation studies of the size and shape of DNA. J. molec. Biol. 11, 373 (1965).

    Google Scholar 

  • Thomas, Jr. C. A., Rubenstein, I.: The arrangements of nucleotide sequences in T2 and T5 bacteriophage DNA molecules. Biophys. J. 4, 93 (1964).

    Google Scholar 

  • Werner, R.: Initiation and propagation of growing points in the DNA of phage T4. Cold Spr. Harb. Symp. quant. Biol. 33, 501 (1968).

    Google Scholar 

  • Zimm, B. H., Crothers, D. M.: Simplified rotating cylinder viscometer for DNA. Proc. nat. Acad. Sci. (Wash.) 48, 905 (1962).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P. Starlinger

Rights and permissions

Reprints and permissions

About this article

Cite this article

Havender, W.R., Trautner, T.A. Genetic and transfection studies with B. subtilis phage SP50 . Molec. gen. Genet. 116, 51–67 (1972). https://doi.org/10.1007/BF00334260

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00334260

Keywords

Navigation