Skip to main content

Gene Transfer: Transduction

  • Protocol
  • First Online:
Pseudomonas Methods and Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1149))

Abstract

Bacteriophages able to propagate on Pseudomonas strains are very common and can be easily isolated from natural environments or lysogenic strains. The development of transducing systems has allowed bacterial geneticists to perform chromosome analyses and mutation mapping. Moreover, these systems have also been proved to be a successful tool for molecular microbiologists to introduce a foreign gene or a mutation into the chromosome of a bacterial cell. This chapter provides a description of the phage methodology illustrated by Adams in 1959 and applicable to strain PAO1 derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zinder ND, Lederberg J (1952) Genetic exchange in Salmonella. J Bacteriol 64:679–699

    Article  CAS  Google Scholar 

  2. Adams MH (1959) Bacteriophages. Interscience, New York

    Book  Google Scholar 

  3. Morse ML, Lederberg EM, Lederberg J (1956) Transduction in Escherichia coli K-12. Genetics 41:142–156

    Article  CAS  Google Scholar 

  4. Lederberg EM, Lederberg J (1953) Genetic studies of lysogenicity in Escherichia coli. Genetics 38:51–64

    Article  CAS  Google Scholar 

  5. Holloway BW (1969) Genetics of Pseudomonas. Bacteriol Rev 33:419–443

    Article  CAS  Google Scholar 

  6. Holloway BW, Krishnapillai V, Morgan AF (1979) Chromosomal genetics of Pseudomonas. Microbiol Rev 43:73–102

    Article  CAS  Google Scholar 

  7. Krishnapillai V (1971) A novel transducing phage. Its role in recognition of a possible new host-controlled modification system in Pseudomonas aeruginosa. Mol Gen Genet 114:134–143

    Article  Google Scholar 

  8. Holloway BW, van de Putte P (1968) Lysogeny and bacterial recombination. In: Peacock WJ, Brock RD (eds) Replication and recombination of genetic material. Australian Academy of Sciences, Canberra, pp 175–183

    Google Scholar 

  9. Holloway BW, Krishnapillai V (1975) Bacteriophages and bacteriocins. In: Clarke PH, Richmond MH (eds) Genetics and biochemistry of Pseudomonas. John Wiley and Sons, London, pp 99–132

    Google Scholar 

  10. Fargie B, Holloway BW (1965) Absence of clustering of functionally related genes in Pseudomonas aeruginosa. Genet Res 6:284–299

    Article  CAS  Google Scholar 

  11. Fox A, Haas D, Reimmann C et al (2008) Emergence of secretion-defective sublines of Pseudomonas aeruginosa PAO1 resulting from spontaneous mutations in the vfr global regulatory gene. Appl Environ Microbiol 74:1902–1908

    Article  CAS  Google Scholar 

  12. Haas D, Holloway BW, Schomböch A et al (1977) The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa. Mol Gen Genet 154:7–22

    Article  CAS  Google Scholar 

  13. Mee BJ, Lee BTO (1967) An analysis of histidine requiring mutants in Pseudomonas aeruginosa. Genetics 55:709–722

    Article  CAS  Google Scholar 

  14. Morgan AF (1979) Transduction of Pseudomonas aeruginosa with a mutant of bacteriophage E79. J Bacteriol 139:137–140

    Article  CAS  Google Scholar 

  15. Malone JG, Jaeger T, Spangler C et al (2010) YfiBNR mediates cyclic di-GMP dependent small colony variant formation and persistence in Pseudomonas aeruginosa. PLoS Pathog 12(6(3)):1000804

    Article  Google Scholar 

  16. Valentini M, Storelli N, Lapouge K (2011) Identification of C(4)-dicarboxylate transport systems in Pseudomonas aeruginosa PAO1. J Bacteriol 193:4307–4316

    Article  CAS  Google Scholar 

  17. Pemberton JM (1973) F116: a DNA bacteriophage specific for the pili of Pseudomonas aeruginosa strain PAO. Virology 55:558–560

    Article  CAS  Google Scholar 

  18. Jarrell K, Kropinski AM (1977) Identification of the cell wall receptor for bacteriophage E79 in Pseudomonas aeruginosa strain PAO. J Virol 23:461–466

    Article  CAS  Google Scholar 

  19. Stanisich VA, Holloway BW (1972) A mutant sex factor of Pseudomonas aeruginosa. Genet Res 19:91–108

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I wish to thank Dr Áine Fox, with whom I had the pleasure of working on several transduction experiments whilst at the University of Lausanne, for critically reviewing this book chapter and Professor Dieter Haas, my Ph.D. supervisor, for introducing me to the fascinating world of phages.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuela Frangipani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Frangipani, E. (2014). Gene Transfer: Transduction. In: Filloux, A., Ramos, JL. (eds) Pseudomonas Methods and Protocols. Methods in Molecular Biology, vol 1149. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-0473-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-0473-0_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-0472-3

  • Online ISBN: 978-1-4939-0473-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics