Skip to main content
Log in

The neurotubular system of the axon and the origin of granulated and non-granulated vesicles in regenerating nerves

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

Electronmicroscope observations have been made on compressed sciatic nerves and preganglionic afferents to the superior cervical ganglia of rats. After 6 hours, the proximal regenerating stumps of both myelinated and unmyelinated axons become filled with enlarged neurotubules and vesicles. Granulated vesicles of 750–900 Å, having a dense core become abundant in all types of regenerating axons and they increase in number after 24 hours. The vesicular material is formed by dilatation and pinching off from neurotubules. The existence of a neurotubular system within the axon, connected with the Golgi complex at the perikaryon and involved in the formation of vesicles, is postulated. The presence of granulated vesicles in all types of regenerating axons and nerve terminals is discussed in relation with their possible functional significance. The distal stumps of compressed sciatic nerves show, after 6 hours, a considerable increase in membranous material within the axoplasm mainly represented by multivesicular and lamellar bodies. This reaction, which is interpreted as being autolytic, is compared with the regenerative reaction of the proximal stump.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andres, K. H.: Mikropinozytose im Zentralnervensystem. Z. Zellforsch. 64, 63–73 (1964).

    Google Scholar 

  • —: Der Feinbau des Bulbus olfactorius der Ratte unter besonderer Berücksichtigung der synaptischen Verbindungen. Z. Zellforsch. 65, 530–561 (1965).

    Google Scholar 

  • Blümcke, S. u. H. R. Niedorf: Elektronenoptische Untersuchungen an Wachstumsendkolben regenerierender peripherer Nervenfasern. Virchows Arch. path. Anat. 340, 93–104 (1965).

    Google Scholar 

  • Bondareff, W.: Submicroscopic morphology of granular vesicles in sympathetic nerves of rat pineal body. Z. Zellforsch. 67, 211–218 (1965).

    Google Scholar 

  • Breemen, V. L. van, E. Anderson, and J. F. Reger. An attempt to determine the origin of synaptic vesicles. Exp. Cell Res., Suppl. 5, 153–167 (1958).

    Google Scholar 

  • Clementi, F., P. Mantegazza and M. Botturi: A pharmacologic and morphologic study on the nature of the dense core granules present in the presynaptic endings of sympathetic ganglia Int. J. Neuropharmacol. 5, 281–285 (1966).

    Google Scholar 

  • Dahlström, A.: Observations on the accumulation of noradrenaline in the proximal and distal parts of peripheral adrenergic nerves after compression. J. Anat. (Lond 99), 677–689 (1965).

    Google Scholar 

  • —, and J. Haggendal: Studies on the transport and life-span of amine storage granules in a peripheral adrenergic neuron system. Acta physiol. scand. 67, 278–288 (1966).

    Google Scholar 

  • de Robertis, E.: Ultrastructure and cytochemistry of the synaptic region. Science 156, 907–914 (1967).

    Google Scholar 

  • —, and H. S. Bennett: Submicroscopic vesicular component in the synapse. Fed. Proc. 13, 35 (1954).

    Google Scholar 

  • —: Some features of the submicroscopic morphology of the synapses in frog and earthworm. J. biophys. biochem. Cytol. 1, 47–56 (1955).

    Google Scholar 

  • —, and C. M. Franchi: The submicroscopic organization of axon material isolated from myelin nerve fibres. J. exp. Med. 98, 269 (1953).

    Google Scholar 

  • —, and A. Pellegrino de Iraldi: A plurivesicular component in adrenergic nerve endings. Anat. Rec. 139, 299 (1961).

    Google Scholar 

  • —, and J. R. Sotelo: Electron microscopic study of cultured nervous tissue. Exp. Cell Res. 3, 433–452 (1952).

    Google Scholar 

  • Düring, M. V.: Über die Feinstruktur der motorischen Endplatte von höheren Wirbeltieren. Z. Zellforsch. 81, 74–90 (1967).

    Google Scholar 

  • Estable, C., W. Acosta-Ferreira, and J. R. Sotelo: An electron microscope study of the regenerating nerve fibres. Z. Zellforsch. 46, 387–399 (1957).

    Google Scholar 

  • Grillo, M. A., and S. L. Palay: Granule-containing vesicles in the autonomic nervous system, in 5th Internat. Congr. for Electron Microscopy, Philadelphia (S. S. Bresse jr., ed.) vol. 2, U-1. New York: Academic Press, Inc. 1962.

    Google Scholar 

  • Hay, E. D.: The fine structure of nerves in the epidermis of regenerating salamander limbs. Exp. Cell Rres. 19, 299–317 (1960).

    Google Scholar 

  • Hökfelt, T.: The effect of reserpine on intraneuronal vesicles of the rat vas deferens. Experientia (Basel) 22, 56 (1956).

    Google Scholar 

  • Inuce, S.: Structural changes of nerve fibres in the early phases of limb regeneration in the adult newt with special references to fine structures of regenerating nerve fibres, Gunma. J. med. Sci. 9, 302–328 (1960). Quot. Biol. Abstr. 36, 727–731 (1961).

    Google Scholar 

  • Kapeller, K., and D. Mayor: The accumulation of noradrenaline in constricted sympathetic nerves as studied by fluorescence and electronmicroscopy. Proc. roy Soc. B 167, 282–292 (1967).

    Google Scholar 

  • Korn, E. D.: Structure of biological membranes. The unit membrane theory is reevaluated in light of the data now available. Science 153, 1491–1498 (1966).

    Google Scholar 

  • Lubinska, L.: Region of transition between preserved and regenerating parts on myelinated nerve fibres. J. comp. Neurol. 113, 315–335 (1959).

    Google Scholar 

  • —: Axoplasmic streaming in regenerating and in normal nerve fibres. Progr. in Brain Res. 13, 1–71 (1964).

    Google Scholar 

  • Melamed, J., and O. Trujillo-Cenóz: Electron microscopic observations on reactional changes occurring in insect nerve fibres after transection. Z. Zellforsch. 59, 851–856 (1963).

    Google Scholar 

  • Miani, N.: Evidence of a proximo-distal movement along the axon of phospholipid synthesized in the nerve cell body. Nature (Lond.) 193, 887–888 (1962).

    Google Scholar 

  • Mori, S.: Some observations on the fine structure of the corpus striatum of the rat brain. Z. Zellforsch. 70, 461–488 (1966).

    Google Scholar 

  • Ochs, S., D. Dalrymple, and G. Richards: Axoplasmic flow in ventral root nerve fibres of the cat. Exp. Neurol. 5, 349–363 (1962).

    Google Scholar 

  • Palay, S. L.: Synapses in the central nervous system. J. biophys. biochem. Cytol., Suppl. 2, 193–202 (1956).

    Google Scholar 

  • —: The morphology of synapses in the central nervous system. Exp. Cell Res., Suppl. 5, 275–293 (1958).

    Google Scholar 

  • Pellegrino de Iraldi, A., and E. de Robertis: Ultrastructure and function of catecholamine containing systems. In: Proc. 2nd Internat. Congr. Endocr. London, Excerpta Medica Internat. Congr. Series No 83, 355–363 (1964).

  • —, H. Farini-Duggan, and E. de Robertis: Adrenergic synaptic vesicles in the anterior hypothalamus of the rat. Anat. Rec. 145, 521–531 (1963).

    Google Scholar 

  • —, and G. Jaim Etcheverry: Granulated vesicles in retinal synapses and neurons. Z. Zellforsch. 81, 283–296 (1967).

    Google Scholar 

  • Reynolds, E. S.: The use of lead citrate as an electron dense stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).

    Google Scholar 

  • Richardson, K. C.: The fine structure of the albino rabbit iris with special reference to the identification of adrenergic and cholinergic nerves and nerve endings in its intrinsic muscles. Amer. J. Anat. 114, 173–205 (1964).

    Google Scholar 

  • Sabatini, D. D., K. G. Bensch, and R. J. Barrnett: Cytochemistry and electron microscope. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J. Cell Biol. 17, 19–58 (1963).

    Google Scholar 

  • Schlote, W., u. H. Hager: Elektronenmikroskopische Befunde zur Feinstruktur von Axon veränderungen im peritraumatischen Bereich nach experimenteller Strangdurchtrennung am Rückenmark der weißen Ratte. Naturwissenschaften 47, 448–451 (1960).

    Google Scholar 

  • Thornburg, W., and E. de Robertis: Polarization and electron microscope study of frog nerve axoplasm. J. biophys. biochem. Cytol. 2, 475–482 (1956).

    Google Scholar 

  • Tilney, L. G., and K. R. Porter: Studies on the microtubules in heliozoa II. The effect of low temperature on these structures in the formation and maintenance of the axopodia. J. Cell Biol. 34, 327–343 (1967).

    Google Scholar 

  • Wechsler, W., u. H. Hager: Elektronenmikroskopische Befunde zur Feinstruktur von Axonveränderungen in regenerierenden Nervenfasern des Nervus ischiadicus der weißen Ratte. Acta neuropath. (Berl.) 1, 489–506 (1962).

    Google Scholar 

  • Weiss, P., and H. B. Hiscoe: Experiments on the mechanism of nerve growth. J. exp. Zool. 107, 315–395 (1948).

    Google Scholar 

  • —, A. C. Taylor, and P. A. Pillai: The nerve fibre as a system in continuous flow; microcinematographic and electronmicroscopic demonstrations. Science 136, 330 (1962).

    Google Scholar 

  • Wettstein, R., and J. R. Sotelo: Electron microscopic study on the regenerative process of peripheral nerves of mice. Z. Zellforsch. 59, 708–730 (1963).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper was supported by Grants of the Consejo Nacional de Investigaciones Cientificas y Técnicas and U.S. Air Force (AF-AFOSR 963—67).

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Iraldi, A.P., de Robertis, E. The neurotubular system of the axon and the origin of granulated and non-granulated vesicles in regenerating nerves. Zeitschrift für Zellforschung 87, 330–344 (1968). https://doi.org/10.1007/BF00333684

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00333684

Keywords

Navigation