Skip to main content
Log in

A matrix analysis for a conjugate vestibulo-ocular reflex

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

The technique of matrix analysis is used to compare the connectivity between vestibular neurons and oculomotor neurons of the two eyes that would generate a conjugate vestibulo-ocular reflex (VOR). The technique shows that the connectivity is normally anatomically symmetric. The technique is also used to determine the types and loci of adaptation within the VOR that will maintain conjugacy. Adaptation is divided into1) that evoked by changes in visual feedback, which requires VOR or system-specific changes and2) that produced by changes in the canals or muscles, which requires deficit-specific adaptation. In the former case, the adaptation could best be achieved by an additive alteration of the vestibularmotoneuron projections. In the latter case, the appropriate adaptations would be serial, multiplicative changes, applied at the level of the vestibular neurons when the canals are at fault or at the level of the motoneurons of the eye whose muscles are impaired. The analysis thus suggests multiple loci of plasticity within the VOR, specialized for adapting to different deficits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel LA, Schmidt D, Dell'Osso LF, Daroff RB (1978) Saccadic system plasticity in humans. Am Neurol 4:313–318

    Article  CAS  Google Scholar 

  • Blanks RHI, Curthoys IS, Markham CH (1975) Planar relationships of the semi-circular canals in man. Acta Oto-Laryngol 80:185–196

    Article  CAS  Google Scholar 

  • Collewijn H (1977) Optokinetic and vestibulo-ocular reflexes in dark-reared rabbits. Exp Brain Res 27:287–300

    CAS  PubMed  Google Scholar 

  • Collewijn H, Martins AJ, Steinman RM (1983) Compensatory eye movements during active and passive head movements: fast adaptation to changes in visual magnification. J Physiol 340:259–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gauthier GM, Robinson DA (1975) Adaptation of the human vestibulo-ocular reflex to magnifying lenses. Brain Res 92:331–335

    Article  CAS  PubMed  Google Scholar 

  • Gonshor H, Melvill Jones G (1976) Short term adaptive changes in the human vestibulo-ocular reflex arc. J Physiol 256:361–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris LR, Cynader M (1981) The eye movements of the darkreared cat. Exp Brain Res 44:44–56

    Google Scholar 

  • Henson DB, Dharamshi BG (1982) Oculomotor adaptation to induced heterophoria and onisometropia. Invest Ophthalmol Vis Sci 22:234–240

    CAS  PubMed  Google Scholar 

  • Hess RF (1977) Eye movements and grating acuity in strabismic amblyopia. Ophthalmol Res 9:225–237

    Article  Google Scholar 

  • Ito M (1982) Cerebellar control of the vestbulo-ocular reflex around the flocculus hypothesis. Annu Rev Neurosci 5:275–296

    Article  CAS  PubMed  Google Scholar 

  • Kommerell G, Olivier D, Theopold M (1976) Adaptive programming of phasic and tonic components in saccadic eye movements. Investigation in patients with abducens palsy. Invest Ophthalmol 15:657–660

    CAS  PubMed  Google Scholar 

  • Leigh RJ, Zee DS (1980) Eye movements of the blind. Invest Ophthalmol Vis Sci 13:328–331

    Google Scholar 

  • Miles FA, Lisberger SG (1981) Plasticity in the vestibulo-ocular reflex: a new hypothesis. Annu Rev Neurosci 4:273–299

    Article  CAS  PubMed  Google Scholar 

  • Optican LM (1982) Saccadic dysmetria In: Lennerstrand G, Zee DS, Keller E (eds) Functional basis of ocular motility disorders. Pergamon Press, Oxford, pp 441–451

    Google Scholar 

  • Optican LM, Robinson DA (1980) Cerebellar dependent adaptive control of primate saccadic system. J Neurophysiol 44:1058–1075

    CAS  PubMed  Google Scholar 

  • Paige GD (1983) Vestibulo ocular reflex and its interactions with visual following mechanisms in the squirrel monkey. II. Response characteristics and plasticity following unilateral inactivation of horizontal canal. J Neurophysiol 49:152–168

    CAS  PubMed  Google Scholar 

  • Robinson DA (1976) Adaptive gain control of vestibuloocular reflex by the cerebellum. J Neurophysiol 39:954–969

    CAS  PubMed  Google Scholar 

  • Robinson DA (1982) The use of matrices in analyzing the threedimensional behaviour of the vestibulo-ocular reflex. Biol Cybern 46:53–66

    Article  CAS  PubMed  Google Scholar 

  • Robinson DA (1985) The coordinates of neurons in the vestibuloocular reflex. In: Berthoz A, Melvill Jones J (eds) Adaptive mechanisms in gaze control. Facts and theories. Elsevier, Amsterdam, pp 297–311

    Google Scholar 

  • Schor C, Hallmark W (1978) Slow control of eye position in strabismic amblyopia. Invest Ophthalmol Vis Sci 17:577–581

    CAS  PubMed  Google Scholar 

  • Schultheis LW, Robinson DA (1981) Directional plasticity of the vestibulo-ocular reflex in the cat. In: Cohen B (ed) Vestibular and oculomotor physiology. Am NY Acad Sci 374:504–512

  • Sherman KR, Keller EL (1986) Vestibulo-ocular reflexes of adventitiously and congenitally blind adults. Invest Ophthalmol Vis Sci 27:1154–1159

    CAS  PubMed  Google Scholar 

  • Snow R, Hore J, Vilis T (1985) Adaption of saccadic and vestibulo-ocular systems after extraocular muscle tenectomy. Invest Ophthalmol Vis Sci 26:924–931

    CAS  PubMed  Google Scholar 

  • Sparks DL, Mays LE, Gurski MR, Hickey TL (1986a) Long- and short-term monocular deprivation in the rhesus monkey: effects on visual fields and optokinetic nystagmus. J Neurosci 6:1771–1780

    CAS  PubMed  Google Scholar 

  • Sparks DL, Gurski MR, Mays LE, Hickey TL (1986b) Effects of Long-term and short-term monocular deprevation upon oculomotor function in the rhesus monkey. In: Keller EL, Zee PS (eds) Adaptive processes in visual and oculomotor systems. Pergamon Press, Oxford, pp 191–197

    Google Scholar 

  • Srebro R (1983) Fixation of normal and amblyopic eyes. Arch Opthalmol 101:214–217

    Article  CAS  Google Scholar 

  • Uchino Y, Hirai H (1983) The vestibulo-ocular reflex arc in the newborn kitten. Exp Brain Res 53:29–35

    Article  CAS  PubMed  Google Scholar 

  • Viirre E, Tweed D, Milner K, Vilis T (1986) A reexamination of the gain of the vestibulo-ocular reflex. J Neurophysiol 56:439–450

    CAS  PubMed  Google Scholar 

  • Viirre E, Cadera W, Vilis T (1987) The pattern of changes produced in the saccadic system and vestibulo-ocular reflex by visually patching one eye. J Neurophysiol 57:92–103

    CAS  PubMed  Google Scholar 

  • Viirre E, Cadera W, Vilis T (1988) Monocular adaptation of the saccadic system and vestibulo-ocular reflex. Invest Ophthalmol Vis Sci 29:139–147

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilis, T., Tweed, D. A matrix analysis for a conjugate vestibulo-ocular reflex. Biol. Cybern. 59, 237–245 (1988). https://doi.org/10.1007/BF00332912

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00332912

Keywords

Navigation