Skip to main content
Log in

Post-transcriptional control of gene expression: bacterial mRNA degradation

  • Special Topic Review: Control of Gene Expression Microorganisms. Edited by Miguel Vicente
  • Special Topic Review
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Many biological processes cannot be fully understood without detailed knowledge of RNA metabolism. The continuous breakdown and resynthesis of prokaryotic mRNA permit rapid production of new kinds of proteins. In this way, mRNA levels can regulate protein synthesis and cellular growth. Analysing mRNA degradation in prokaryotes has been particularly difficult because most mRNA undergo rapid exponential decay. Prokaryotic mRNAs differ in their susceptibility to degradation by endonucleases and exonucleases, possibly because of variation in their sequencing and structure. In spite of numerous studies, details of mRNA degradation are still largely unknown. This review highlights those aspects of mRNA metabolism which seem most influential in the regulation of gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achord, D. & Kennell, D. 1974 Metabolism of messenger RNA from the gal operon of Escherichia coli. Journal of Molecular Biology 90, 581–599.

    Google Scholar 

  • Alifano, P., Piscitelli, C., Blasi, V., Rivellini, F., Nappo, A.G., Bruni, C.B. & Carlomagno, M.S. 1992 Processing of a polycistronic mRNA requires a 5′ cis element and active translation. Molecular Microbiology 6, 787–797.

    Google Scholar 

  • Apirion, D. & Gegenheimer, P. 1984 Molecular biology of RNA processing in prokaryotic cells. In Processing of RNA, ed. Apirion, D. pp. 35–62. Boca Raton FL: CRC Press.

    Google Scholar 

  • Arraiano, C.M., Yancey, S.D. & Kushner, S.R. 1988 Stabilization of discrete mRNA breakdown products in ams pnp rnb multiple mutants of Escherichia coli K-12. Journal of Bacteriology 170, 4625–4633.

    Google Scholar 

  • Arraiano, C.M., Yancey, S.R. & Kushner, S.R. 1993 Identification of endonucleolytic cleavage sites involved in the decay of Escherichia coli trxA mRNA. Journal of Bacteriology 175, 1043–1052.

    Google Scholar 

  • Babitzke, P. & Kushner, S. 1991 The ams (altered mRNA stability) protein and ribonuclease E are encoded by the same structural gene of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 88, 1–5.

    Google Scholar 

  • Bardwell, J.C.A., Régnier, P., Chen, S., Nakamura, Y., Grunberg-Manago, M. & Court, D. 1989 Autoregulation of RNase III operon by mRNA processing. EMBO Journal 8, 3401–3407.

    Google Scholar 

  • Barry, G., Squires, C. & Squires, C.L. 1980 Attenuation and processing of RNA from the rplJL-rpoBC transcription unit of Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 77, 3331–3335.

    Google Scholar 

  • Bass, B.L. & Cech, T.R. 1984 Specific interaction between the self-splicing RNA of Tetrahymena and its guanosine substrate: implications for biological catalysis by RNA. Nature 308, 820–826.

    Google Scholar 

  • Belasco, J.G., Beatty, J.T., Adams, C.W., VonGabain, A. & Cohen, S.N. 1985 Differential expression of photosynthesis genes in R. capsulata results from segmental differences in stability within the polycistronic rxcA transcript. Cell 40, 171–181.

    Google Scholar 

  • Belasco, J.G., Nilsson, G., VonGabain, A. & Cohen, S.N. 1986 The stability of E. coli gene transcripts is dependent on determinants localized to specific mRNA segments. Cell 46, 245–251.

    Google Scholar 

  • Blundell, M., Craig, E. & Kennell, D. 1972 Decay rates of different mRNAs in Escherichia coli and models of decay. Nature, New Biology 238, 46–49.

    Google Scholar 

  • Blundell, M. & Kennel, D. 1974 Evidence for endonucleolytic attack in the decay of Iac messenger RNA in Escherichia coli. Journal of Molecular Biology 83, 143–161.

    Google Scholar 

  • Bouvet, P. & Belasco, J.G. 1992 Control of RNase E-mediated RNA degradation by 5′ terminal base pairing in E. coli. Nature 360, 488–491.

    Google Scholar 

  • Brill, W.J. 1980 Biochemical genetics of nitrogen-fixation. Microbiological Reviews 44, 449–467.

    Google Scholar 

  • Burton, Z.F., Gross, C.A., Watanabe, K.K. & Burgess, R.R. 1983 The operon that encodes the sigma subunit of RNA polymerase also encodes ribosomal protein S21 and RNA primase in E. coli K12. Cell 32, 335–349.

    Google Scholar 

  • Cannistraro, V.J & Kennell, D. 1985 Evidence that the 5′ end of lac mRNA starts to decay as soon as it is synthesized. Journal of Bacteriology 161, 820–822.

    Google Scholar 

  • Cannistraro, V.J., Subbarao, M.N. & Kennell, D. 1986 Specific-endonucleolytic sites for decay of E. coli mRNA. Journal of Molecular Biology 192, 257–274.

    Google Scholar 

  • Chen, C.A., Beatty, J.T., Cohen, S.N. & Belasco, J.G. 1988 An intercistronic stem-loop structure functions as an mRNA decay terminator necessary but insufficient for puf mRNA stability. Cell 52, 609–619.

    Google Scholar 

  • Chen, C.A. & Belasco, J. 1990 Degradation of pufLMX mRNA in Rhodobacter capsulatus is initiated by nonrandom endonucleolytic cleavage. Journal of Bacteriology 172, 4578–4586.

    Google Scholar 

  • Cho, K.-O. & Yanofsky, C. 1988 Sequence changes preceding a Shine-Delgarno region influence trpE mRNA translation and decay. Journal of Molecular Biology 204, 51–60.

    Google Scholar 

  • Claverie-Martin, F., Diaz-Torres, M.R., Yancey, S. & Kushner, S.R. 1991 Analysis of the altered mRNA stability (ams) gene of Escherichia coli K-12. Journal of Biological Chemistry 266, 2843–2851.

    Google Scholar 

  • Cole, J.R. & Nomura, M. 1986 Changes in the half-life of ribosomal protein messenger RNA caused by translational repression. Journal of Molecular Biology 188, 383–392.

    Google Scholar 

  • Deutscher, M.P. 1988 The metabolic role of RNases. Trends in Biochemical Science 13, 136–139.

    Google Scholar 

  • Donovan, W.P. & Kushner, S.R. 1986 Polynucleotide phosphorylase and ribonuclease II are required for cell viability and mRNA turnover in Escherichia coli K-12. Proceedings of the National Academy of Sciences of the United States of America 83, 120–124.

    Google Scholar 

  • Duvoisin, R.M., Belin, D.B. & Krisch, H.M. 1986 A plasmid expression vector that permits stabilization of both mRNAs and proteins encoded by the cloned genes. Gene 45, 193–201.

    Google Scholar 

  • Ebbole, D.J. & Zalkin, H. 1988 Detection of pur operon-attenuated mRNA and accumulated degradation intermediates in Bacillus subtilis. Journal of Biological Chemistry 263, 10894–10902.

    Google Scholar 

  • Ehretsmann, C.P., Carpousis, A.J. & Krisch, H.M. 1992 Specificity of Escherichia coli endoribonuclease RNase E: in vivo and in vitro analysis of mutants in a bacteriophage T4 mRNA processing site. Genes and Development 6, 149–159.

    Google Scholar 

  • Emory, S.A. & Belasco, J.G. 1990 The ompA 5′ untranslated RNA segment functions in Escherichia coli as a growth-rate-regulated mRNA stabilizer whose activity is unrelated to translational efficiency. Journal of Bacteriology 172, 4472–4481.

    Google Scholar 

  • Emory, S.A., Bouvet, P. & Belasco, J.G. 1992 A 5′ terminal stem-loop structure can stabilize mRNA in Escherichia coli. Genes and Development 6, 135–148.

    Google Scholar 

  • Gesteland, R.F. 1966 Isolation and characterization of ribonuclease I mutants of Escherichia coli. Journal of Molecular Biology 16, 67–84.

    Google Scholar 

  • Gilson, E., Clement, J.-M., Brutlag, D. & Hofnung, M. 1984 A family of dispersed repetitive extragenic palindromic RNA sequences in E. coli. EMBO Journal 3, 1417–1422.

    Google Scholar 

  • Graham, M.Y., Tal, M. & Schlessinger, D. 1982 lac transcription in Escherichia coli cells treated with chloramphenicol. Journal of Bacteriology 151, 251–261.

    Google Scholar 

  • Gorski, K., Roch, P., Prentki & Krisch, H.M. 1985 The stability of bacteriophage T4 gene 32 mRNA: a 5′ leader sequence that can stabilize mRNA transcripts. Cell 43, 461–469.

    Google Scholar 

  • Guarneros, G., Montanez, C., Hernandez, T. & Court, D. 1982 Post-transcriptional control of bacteriophage int gene expression from a site distal to the gene. Proceedings of the National Academy of Sciences of the United States of America 79, 238–242.

    Google Scholar 

  • Guarneros, G. & Portier, P. 1990 Different specificities of RNase II and PNPase in 3′ mRNA decay. Biochimie 72, 771–777.

    Google Scholar 

  • Gupta, R.S., Kasai, T. & Schlessinger, D. 1977 Purification and some novel properties of RNAse II. Journal of Biological Chemistry 252, 8945–8951.

    Google Scholar 

  • Gupta, R.S. & Schlessinger, D. 1976 Coupling of rates of transcription, translation, and messenger ribonucleic acid degradation in streptomycin-dependent mutants of Escherichia coli. Journal of Bacteriology 125, 84–93.

    Google Scholar 

  • Har-El, R., Siberstein, A., Kuhn, J. & Tal, M. 1979 Synthesis and degradation of lac mRNA in E. coli depleted of 30S ribosomal subunits. Molecular and General Genetics 173, 135–144.

    Google Scholar 

  • Hautala, J.A., Bassett, C.L., Giles, N.N. & Kushner, S.R. 1979 Increased expression of a eukaryotic gene in Escherichia coli through the stabilization of its messenger RNA. Proceedings of the National Academy of Sciences of the United States of America 76, 5774–5778.

    Google Scholar 

  • Hayashi, M.N. & Hayashi, M. 1985 Cloned DNA sequences that determine mRNA stability of bacteriophage PhiX174 in vivo are functional. Nucleic Acids Research 13, 5937–5948.

    Google Scholar 

  • Higgins, C.F., Ames, G.F.L., Barnes, W.M., Clement, J.M. & Hofnung, M. 1982 A novel intercistronic regulatory element of prokaryotic operons. Nature 298, 760–762.

    Google Scholar 

  • Imamoto, F. & Kano, Y. 1971 Inhibition of transcription of the tryptophan operon in Escherichia coli by a block in initiation of translation. Nature, New Biology 232, 169–173.

    Google Scholar 

  • Ingraham, J.L., Maaloe, O. & Neidhardt, F.C. 1983 The Growth of the Bacterial Cell. Sunderland MA: Sinauer Associates.

    Google Scholar 

  • Kang, C. & Cantor, C.R. 1985 Structure of ribosome-bound messenger RNA as revealed by enzymatic accessibility studies. Journal of Molecular Biology 181, 241–251.

    Google Scholar 

  • Klug, G., Adams, C.W., Belasco, J., Doerge, B. & Cohen, S.N. 1987 Biological consequences of segmental alterations in mRNA stability: effects of deletion of the intercistronic hairpin loop region of the Rhodobacter capsulatus puf operon. EMBO Journal 6, 3515–3522.

    Google Scholar 

  • Kushner, S.R., Arraiano, C.M., Yancey, S.D. & Donovan, W.P. 1985 Analysis of mRNA degradation in Escherichia coli. In Sequences Specificity in Transcription and Translation, eds Calendar, R. & Gold, L. pp. 451–460. A.R. Liss.

  • Lim, L.W. & Kennell, D. 1979 Models for decay of Escherichia coli lac messenger RNA and evidence for inactivating cleavages between its messages. Journal of Molecular Biology 135, 369–390.

    Google Scholar 

  • Lin-Chao, S. & Cohen, S.N. 1991 The rate of processing and degradation of antisense RNAI regulates the replication of ColE1-type plasmids in vivo. Cell 65, 1233–1242.

    Google Scholar 

  • Mackie, G.A. 1989 Stabilization of the 3′ one-third of Escherichia coli ribosomal protein S20 mRNA in mutants lacking polynucleotide phosphorylase. Journal of Bacteriology 171, 4112–4120.

    Google Scholar 

  • McCarthy, J.E.G., Sebald, Gross, G. & Lammers, R. 1986 Enhancement of translational efficiency by the Escherichia coli atpE translational initiation region: its fusion with two human genes. Gene 41, 201–210.

    Google Scholar 

  • McLaren, R.S., Newbury, S., Dance, G.S.C., Causton, H.C. & Higgins, C. 1991 mRNA degradation by processive 3′–5′ exoribonucleases in vitro and the implications for procaryotic mRNA decay in vivo. Journal of Molecular Biology 221, 81–95.

    Google Scholar 

  • Melefors, O. & VonGabain, A. 1988 Site-specific endonucleolytic cleavages and the regulation of stability of E. coli ompA mRNA. Cell 52, 893–901.

    Google Scholar 

  • Melefors, O. & VonGabain, A. 1991 Genetic studies of cleavage-initiated mRNA decay and processing of ribosomal 9S RNA show that the E. coli ams and rne loci are the same. Molecular Microbiology 5, 857–864.

    Google Scholar 

  • Menninger, J.R. 1976 Peptidyl transfer RNA dissociates during protein synthesis from ribosomes of Escherichia coli. Journal of Biological Chemistry 251, 3392–3398.

    Google Scholar 

  • Miczak, A., Srivastava, R.A.K. & Apirion, D. 1991 Location of the RNA-processing enzymes RNase III, RNase E and RNase P in the Escherichia coli cell. Molecular Microbiology 5, 1801–1810.

    Google Scholar 

  • Misra, T.K. & Apirion, D. 1979 RNase E, an RNA processing enzyme from E. coli. Journal of Biological Chemistry 254, 11154–11159.

    Google Scholar 

  • Mizuno, T., Chou, M. & Inouye, M. 1984 A unique mechanism regulating gene expression: translational inhibition by a complementary RNA transcript (mic RNA). Proceedings of the National Academy of Sciences of the United States of America 81, 1966–1970.

    Google Scholar 

  • Mott, J.E., Galloway, J.L. & Platt, T. 1985 Maturation of Escherichia coli tryptophan operon mRNA: evidence for 3′ exonucleolytic processing after rho-dependent termination. EMBO Journal 4, 1887–1891.

    Google Scholar 

  • Mudd, E.A., Krisch, H.M. & Higgins, C.F. 1990 RNase E, an endoribonuclease, has a general role in the chemical decay of Escherichia coli: evidence that rne and ams are the same genetic locus. Molecular Microbiology 4, 2127–2135.

    Google Scholar 

  • Mudd, E.A., Prentki, P., Belin, D. & Krisch, H.M. 1988 Processing of unstable bacteriophage T4 gene 32 mRNAs into a stable species requires ribonuclease E. EMBO Journal 7, 3601–3607.

    Google Scholar 

  • Newbury, S.F., Smith, N.H. & Higgins, C.F. 1987b Differential mRNA stability controls relative gene expression within a polycistronic operon. Cell 51, 1131–1143.

    Google Scholar 

  • Newbury, S.F., Smith, N.H., Robinson, E.C., Hiles, I.D. & Higgins, C.F. 1987a Stabilization of translationally active mRNA by prokaryotic REP sequences. Cell 48, 297–310.

    Google Scholar 

  • Nierlich, D. 1968 Amino acid control over RNA synthesis: a revaluation. Proceedings of the National Academy of Sciences of the United States of America 60, 1345–1352.

    Google Scholar 

  • Nilsson, G., Belasco, J.G., Cohen, S.N. & VonGabain, A. 1984 Growth-rate dependent regulation of mRNA stability in Escherichia coli. Nature 312, 75–77.

    Google Scholar 

  • Nilsson, G., Belasco, J.G., Cohen, S.N. & VonGabain, A. 1987 The effect of premature termination of translation on mRNA stability depends on the location of ribosome release. Proceedings of the National Academy of Sciences of the United States of America 84, 4890–4894.

    Google Scholar 

  • Nilsson, P. & Uhlin, B.E. 1991 Differential decay of a polycistronic Escherichia coli transcript is initiated by RNase E-dependent endonucleolytic processing. Molecular Microbiology 5, 1791–1799.

    Google Scholar 

  • Ono, M. & Kuwano, M. 1979 A conditional lethal mutation in an Escherichia coli strain with a longer chemical lifetime of mRNA. Journal of Molecular Biology 129, 343–357.

    Google Scholar 

  • Ono, M. & Kuwano, M. 1980 Chromosomal location of a gene for chemical longevity of messenger ribonucleic acid in a temperature-sensitive mutant of Escherichia coli. Journal of Bacteriology 142, 325–326.

    Google Scholar 

  • Panayotatos, N. & Truong, K. 1985 Cleavage within an RNase III site can control mRNA stability and protein synthesis in vivo. Nucleic Acids Research 13, 2227–2240.

    Google Scholar 

  • Patel, A.M., Dallmann, H.G., Skakoon, E.N., Kapala, T.D. & Dunn, S.D. 1990 The E. coli unc transcription terminator enhances the expression of uncC encoding the e subunit of F1-ATPase from plasmids by stabilizing the transcript. Molecular Microbiology 4, 1941–1946.

    Google Scholar 

  • Petersen, C. 1991 Multiple determinants of functional mRNA stability: sequence alterations at either end of the lacZ gene affect the rate of mRNA inactivation. Journal of Bacteriology 173, 2167–2172.

    Google Scholar 

  • Petersen, S. 1984 Escherichia coli ribosomes translate in vivo with variable rate. EMBO Journal 3, 2895–2898.

    Google Scholar 

  • Petersen, S., Reeh, S. & Friesen, J.D. 1978 Functional mRNA half-lives in E. coli. Molecular and General Genetics 166, 329–336.

    Google Scholar 

  • Plamann, M.D. & Stauffer, G.V. 1990 Escherichia coli glyA mRNA decay: The role of 3′ secondary structure and the effects of the pnp and rnb mutations. Molecular and General Genetics 220, 301–306.

    Google Scholar 

  • Portier, C., Dondon, L., Grunberg-Manago, M. & Régnier, P. 1987 The first step in the functional inactivation of the Escherichia coli polynucleotide phosphorylase messenger is a ribonuclease III processing at the 5′ end. EMBO Journal 6, 2165–2170.

    Google Scholar 

  • Régnier, P. & Grunberg-Manago, M. 1989 Cleavage by RNase III in the transcripts of the metY-nusA-infB operon of Escherichia coli releases the tRNA and initiates the decay of the downstream mRNA. Journal of Molecular Biology 210, 293–302.

    Google Scholar 

  • Régnier, P. & Grunberg-Manago, M. 1990 RNase III cleavages in non-coding leaders of E. coli transcripts control mRNA stability and genetic expression. Biochimie 72, 825–834.

    Google Scholar 

  • Régnier, P. & Hajnsdorf, E. 1991 Decay of mRNA encoding ribosomal protein S15 of Escherichia coli is initiated by an RNase E-dependent endonucleolytic cleavage that removes the 3′ stabilizing stem and loop structure. Journal of Molecular Biology 217, 283–292.

    Google Scholar 

  • Reiner, A.M. 1969 Isolation and mapping of polynucleotide phosphorylase mutants of Escherichia coli. Journal of Bacteriology 97, 1431–1436.

    Google Scholar 

  • Robert-Le Meur, M. & Portier, C. 1992 E. coli polynucleotide phosphorylase expression is autoregulated through an RNase III dependent mechanism. EMBO Journal 6, 2165–2170.

    Google Scholar 

  • Robertson, H.D. 1982 Escherichia coli ribonuclease III cleavage sites. Cell 30, 669–672.

    Google Scholar 

  • Robertson, H.D., Webster, R.E. & Zinder, N.D. 1968 Purification and properties of ribonuclease III from Escherichia coli. Journal of Biological Chemistry 243, 82–91.

    Google Scholar 

  • Saito, H. & Richardson, C.C. 1981 Processing of mRNA by ribonuclease III regulates expression of gene 1.2 of bacteriophage T7. Cell 27, 533–542.

    Google Scholar 

  • Schlessinger, D., Jacobs, K.A., Gupta, R.S., Kano, Y. & Imamoto, F. 1977 Decay of individual Escherichia coli trp messenger RNA is sequentially ordered. Journal of Molecular Biology 110, 421–439.

    Google Scholar 

  • Schmeissner, U., McKenney, K., Rosenberg, M. & Court, D. 1984 Removal of a terminator structure by RNA processing regulates int gene expression. Journal of Molecular Biology 176, 39–53.

    Google Scholar 

  • Schneider, E., Blundell, M. & Kennell, D. 1978 Translation and mRNA decay. Molecular and General Genetics 160, 121–129.

    Google Scholar 

  • Schwartz, T., Craig, E. & Kennell, D. 1970 Inactivation and degradation of messenger ribonucleic acid from the lactose operon of Escherichia coli. Journal of Molecular Biology 54, 299–311.

    Google Scholar 

  • Shine, J. & Dalgarno, L. 1974 Complementary to nonsense triplets and ribosome binding sites. Proceedings of the National Academy of Sciences of the United States of America 71, 1342–1346.

    Google Scholar 

  • Singer, P. & Nomura, M. 1985 Stability of ribosomal protein mRNA and translational feedback regulation in Escherichia coli. Molecular and General Genetics 199, 543–546.

    Google Scholar 

  • Singer, M.F. & Tolbert, G. 1965 Purification and properties of a potassium-activated phosphodiesterase (RNAase II) from Escherichia coli. Biochemistry 4, 1319–1330.

    Google Scholar 

  • Spahr, P.F. 1964 Purification and properties of ribonuclease II from Escherichia coli. Journal of Biological Chemistry 239, 3716–3726.

    Google Scholar 

  • Stanssens, P., Remaut, E. & Fiers, W. 1986 Inefficient translation initiation causes premature transcription termination of the lacZ gene. Cell 45, 711–718.

    Google Scholar 

  • Stern, M.J., Ames, G.F.-L., Smith, N.H., Robinson, E.C. & Higgins, C.F. 1984 Repetitive extragenic palindromic sequences: a major component of the bacterial genome. Cell 37, 1015–1026.

    Google Scholar 

  • Subbarao, M.N. & Kennell, D. 1988 Evidence for endonucleolytic cleavages in decay of lacZ and lacI mRNAs. Journal of Bacteriology 170, 2860–2865.

    Google Scholar 

  • Takata, R., Izuhara, M. & Akiyama, K. 1992 Processing in the 5′ region of the pnp transcript facilitates the site-specific endonucleolytic cleavages of mRNA. Nucleic Acids Research 20, 847–850.

    Google Scholar 

  • Takata, R., Mukai, T. & Hori, K. 1987 Attenuation and processing of RNA from the rpsO pnp transcription unit of Escherichia coli. Nucleic Acids Research 13, 7289–7297.

    Google Scholar 

  • Taraseviciene, L., Miczak, A. & Apirion, D. 1991 The gene specifying RNase E (rne) and a gene affecting mRNA stability (ams) are the same gene. Molecular Microbiology 5, 851–855.

    Google Scholar 

  • Tomcsanyi, T. & Apirion, D. 1985 Processing enzyme ribonuclease specifically cleaves RNA I an inhibitor of primer formation in plasmid DNA synthesis. Journal of Molecular Biology 185, 713–720.

    Google Scholar 

  • Uzan, M., Favre, R. & Brody, E. 1988 A nuclease that cuts specifically in the ribosome binding site of some T4 mRNAs. Proceedings of the National Academy of Sciences of the United States of America 85, 8895–8899.

    Google Scholar 

  • Varenne, S., Buc, J., Lloubes, R. & Lazdunski, C. 1984 Translation is a non-uniform process. Journal of Molecular Biology 180, 549–576.

    Google Scholar 

  • VonGabain, A., Belasco, J.G., Schottel, J.L., Chang, A.C.Y. & Cohen, S.N. 1983 Decay of mRNA in Escherichia coli: investigation of the fate of specific segments of transcripts. Proceedings of the National Academy of Sciences of the United States of America 80, 653–657.

    Google Scholar 

  • Watson, N., Gurevitz, M., Ford, J. & Apirion, D. 1984 Self cleavage of a precursor RNA from a bacteriophage T4. Journal of Molecular Biology 172, 301–303.

    Google Scholar 

  • Wong, H.C. & Chang, S. 1986 Identification of a positive retroregulator that stabilizes mRNAs in bacteria. Proceedings of the National Academy of Sciences of the United States of America 83, 3233–3237.

    Google Scholar 

  • Yen, C., Green, L. & Miller, C.G. 1980 Peptide accumulation during growth of peptidase-deficient mutants. Journal of Molecular Biology 143, 35–48.

    Google Scholar 

  • Zilhão, R., Camelo, L. & Arraiano, C.M. 1993 DNA sequencing and expression of the gene rnb encoding Escherichia coli ribonuclease II. Molecular Microbiology 8, 43–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arraiano, C.M. Post-transcriptional control of gene expression: bacterial mRNA degradation. World Journal of Microbiology and Biotechnology 9, 421–432 (1993). https://doi.org/10.1007/BF00328030

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00328030

Key words

Navigation