Skip to main content
Log in

The role of vertical transport and capture of electrons and holes for the transient optical response in quantum-well heterostructures

  • Contributed Paper
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The transient optical response of quantum wells (QWs) after optical and electrical carrier injection into the barrier layers is studied experimentally and theoretically. We have varied the transport geometry in GaAs/AlGaAs and InGaAs/InAlGaAs heterostructures and emphasize the basic principles for a theoretical treatment of electron and hole capture into QWs for a proper description of vertical carrier transport in the barriers of QW heterostructures. Comparing our experimental data with the results of theoretical model calculations, we determine the capture, reflection and transmission probabilities, the ambipolar diffusivities and the ambipolar mobilities in the barriers of GaAs/AlGaAs, as a model system. The temporal evolution of the electron and the hole capture current densities at the QWs are studied in detail for a wide variation of the injected carrier densities. Amplitude modulation experiments are performed for InGaAs/InAlGaAs QW laser devices providing increasing 3 dB frequencies for decreasing confinement layer thickness, indicating the influence of carrier transport in the barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. NAGARAJAN, M. ISHIKAWA, T. FUKUSHIMA, R. S. GEELS and J. E. BOWERS, IEEE J. Quantum Electron. 28 (1992) 1990.

    Google Scholar 

  2. R. NAGARAJAN, T. FUKUSHIMA, M. ISHIKAWA, J. E. BOWERS, R. S. GEELS and L. A. COLDREN, IEEE Photon. Technol. Lett. 4 (1992) 121.

    Google Scholar 

  3. M. AOKI, K. UOMI, T. TSUCHIYA, M. SUZUKI and N. CHINONE, Electron. Lett. 26 (1990) 1841.

    Google Scholar 

  4. H. HIRAYAMA, Y. MIYAKE and M. ASADA, IEEE J. Quantum Electron. 28 (1992) 68.

    Google Scholar 

  5. N. TESSLER, R. NAGAR and G. EISENSTEIN, IEEE J. Quantum Electron. 28 (1992) 2242.

    Google Scholar 

  6. N. TESSLER and G. EISENSTEIN, Appl. Phys. Lett. 62 (1993) 10.

    Google Scholar 

  7. S. C. KAN, D. VASSILOSKI, T. C. WU and K. Y. LAU, Appl. Phys. Lett. 61 (1992) 752.

    Google Scholar 

  8. A. GRABMAIER, M. SCHÖFTHALER and A. HANGLEITER, Appl. Phys. Lett. 62 (1993) 52.

    Google Scholar 

  9. L. F. LESTER and B. K. RIDLEY, J. Appl. Phys. 72 (1992) 2579.

    Google Scholar 

  10. E. O. GÖBEL, H. JUNG, J. KHL and K. PLOOG, Phys. Rev. Lett. 51 (1983) 1588.

    Google Scholar 

  11. D. BIMBERG, J. CHRISTEN, A. STECKENBORN, G. WEIMANN and W. SCHLAPP, J. Luminescence 30 (1985) 562.

    Google Scholar 

  12. H. HILLMER, G. MAYER, A. FORCHEL, K. S. LÖCHNER and E. BAUSER, Appl. Phys. Lett. 49 (1986) 948.

    Google Scholar 

  13. J. A. BRUM, T. WEIL, J. NAGLE and B. VINTER, Phys. Rev. B 34 (1986) 2381.

    Google Scholar 

  14. D. J. WESTLAND, D. MIHAILOVIC, J. F. RYAN and M. D. SCOTT, Appl. Phys. Lett. 51 (1987) 590.

    Google Scholar 

  15. J. BENHLAL, P. LAVALLARD, C. GOURDON, R. GRUOSSON, M. L. ROBLIN, A. M. POUGNET and R. PLANEL, J. de Phys. Col. C5 (1987) 471.

    Google Scholar 

  16. B. DEVEAUD, J. SHAH, T. C. DAMEN, B. LAMBERT and A. REGRENY, Phys. Rev. Lett. 58 (1987) 2582.

    Google Scholar 

  17. J. FELDMANN, G. PETER, E. O. GÖBEL, K. LEO, H.-J. POLLAND, K. PLOOG, K. FUJIWARA and T. NAKAYAMA, Appl. Phys. Lett. 51 (1987) 226.

    Google Scholar 

  18. B. DEVEAUD, J. SHAH, T. C. DAMEN, B. LAMBERT, A. CHOMETTE and A. REGRENY, IEEE J. Quantum Electron. 24 (1988) 1641.

    Google Scholar 

  19. B. DEVEAUD, F. CLÉROT, A. REGRENY, K. FUJIWARA, K. MITSUNAGA and J. OHTA, Appl. Phys. Lett. 55 (1989) 2646.

    Google Scholar 

  20. H. HILLMER, A. FORCHEL, T. KUHN, G. MAHLER and H. P. MEIER, Phys. Rev. B 43 (1991) 13992.

    Google Scholar 

  21. T. KUHN and G. MAHLER, Solid-State Electron. 32 (1989) 1851.

    Google Scholar 

  22. A. WELLER, P. THOMAS, J. FELDMANN, G. PETER and E. O. GÖBEL, Appl. Phys. A 48 (1989) 509.

    Google Scholar 

  23. S. WEISS, J. M. WIESENFELD, D. S. CHEMLA, G. RAYBON, G. SUCHA, M. WEGENER, G. EISENSTEIN, C. A. BURRUS, A. G. DENTAI, U. KOREN, B. I. MILLER, H. TEMKIN, R. A. LOGAN and T. TANBUN-EK, Appl. Phys. Lett. 60 (1992) 9.

    Google Scholar 

  24. P. W. M. BLOM, C. SMIT, J. E. M. HAVERKORT and J. H. WOLTER, Phys. Rev. B 47 (1993) 2072.

    Google Scholar 

  25. M. R. X. BARROS, P. C. BECKER, D. MORRIS, B. DEVEAUD, A. REGRENY and F. BEISSER, Phys. Rev. B 47 (1993) 10951.

    Google Scholar 

  26. G. BACHER, C. HARTMANN, H. SCHWEIZER, T. HELD, G. MAHLER and H. NICKEL, Phys. Rev. B 47 (1993) 9545.

    Google Scholar 

  27. B. R. NAG, Electron Transport in Compound Semiconductors, Springer Series in Solid-State Sciences, vol. 11 (Springer, Berlin, 1980).

    Google Scholar 

  28. P. A. MARKOWICH, C. A. RINGHOFER and C. SCHMEISER, Semiconductor Equations (Springer, Wien, 1990).

    Google Scholar 

  29. T. KUHN and G. MAHLER, Phys. Rev. B 40 (1989) 12147.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hillmer, H., Kuhn, T., Greiner, A. et al. The role of vertical transport and capture of electrons and holes for the transient optical response in quantum-well heterostructures. Opt Quant Electron 26, S691–S703 (1994). https://doi.org/10.1007/BF00326656

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00326656

Keywords

Navigation