Skip to main content
Log in

Fluorescence microscopy of the catecholamine-containing neurons of the hypothalamohypophyseal system

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

The hypothalamohypophyseal system of the mouse, rat, guinea-pig, cat, dog and monkey (Macaca mulatta) was studied with the fluorescence method for catecholamine-containing neurons developed by Falck et al. (1962). The fluorescent fibers are prominent in the external layer and around the primary portal plexus of the infundibulum and in the peripheral region of the neural lobe of these animals, particulary on the external surface and surrounding the primary capillary loops. These fluorescent fibers are connected with fluorescent cells in the arcuate nuclei, and this connection coincides with the tuberohypophyseal system. The neurons of this system have a particular affinity for dopamine, possibly due to their own content of dopamine. In the supraoptic and paraventricular nuclei, no fluorescent cells were found. In the pars intermedia, we also found catecholamine-containing fibers.

The presence of catecholamine-containing fibers in the adeno- and neurohypophysis are considered in relation to other data derived from fluorescence and electron microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bargmann, W.: Zwischenhirn-Hypophysensystem, Neurosekretion und Nebenniere. Geburtsh. u. Frauenheilk. 13, 193–212 (1953).

    Google Scholar 

  • Bertler, A., B. Falck, and E. Rosengren: The direct demonstration of a barrier mechanism in the brain capillaries. Acta pharmacol. (Kbh.) 20, 317–321 (1963).

    Google Scholar 

  • Carlsson, A.: Functional significance of drug-induced changes in brain monoamine levels. Progr. Brain Res. 8, 9–27 (1964).

    Google Scholar 

  • —, B. Falck, and N.-Å. Hillarp: Cellular localization of brain monoamines. Acta physiol. scand. 56, Suppl. 196, 1–28 (1962).

    Google Scholar 

  • —, and M. Lindquist: In vivo decarboxylation of α-methyl dopa and α-methyl metatyrosine. Acta physiol. scand. 54, 87–94 (1962).

    Google Scholar 

  • Dahlström, A.: Observations on the accumulation of noradrenaline in the proximal and distal parts of peripheral adrenergic nerves after compression. J. Anat. (Lond.) 99, 677–689 (1965).

    Google Scholar 

  • -, and K. Fuxe: Evidence for the existence of monoamine-containing neurons in the central nervous system. 1. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta physiol. scand. 62, Suppl. 232, 1–55.

  • —, L. Olson, and U. Ungerstedt: Ascending systems of catecholamine neurons from the lower brain stem. Acta physiol. scand. 62, 485–486 (1964).

    Google Scholar 

  • Duffy, P. E., and M. Menefee: Electron microscopic observation of neurosecretory granules, nerve and glial fibers, and blood vessels in the median eminence of the rabbit. Amer. J. Anat. 117, 251–286 (1965).

    Google Scholar 

  • Enemar, A., and B. Falck: On the presence of adrenergic nerves in the pars intermedia of the frog, Rana temporaria. Gen. comp. Endocr. 5, 577–583 (1965).

    Google Scholar 

  • Eränkö, O., and M. Härkönen: Effect of axon division on the distribution of noradrenaline and acetylcholinesterase in sympathetic neurons of the rat. Acta physiol. 63, 411–412 (1965).

    Google Scholar 

  • Falck, B.: Observations on the possibilities of the cellular localization of monoamines by a fluorescence method. Acta physiol. scand. 56, Suppl. 197, 1–25 (1962).

    Google Scholar 

  • Fuxe, K.: Cellular localization of monoamines in the median eminence and the infundibular stem of some mammals. Z. Zellforsch. 61, 710–724 (1964).

    Google Scholar 

  • —: Evidence for the existence of monoamine neurons in the central nervous system. III. The monoamine nerve terminal. Z. Zellforsch. 65, 573–596 (1965a).

    Google Scholar 

  • —: Evidence for the existence of monoamine neurons in the central nervous system. IV. Distribution of monoamine nerve terminals in the central nervous system. Acta physiol. scand. 64, Suppl. 247, 37–84 (1965b).

    Google Scholar 

  • —, and T. Hökfelt: Further evidence for the existence of tubero-infundibular dopamine neurons. Acta physiol. scand. 66, 245–246 (1966).

    Google Scholar 

  • Greving, R.: Die zentralen Anteile des vegetativen Nervensystems. In: Handbuch der mikroskopischen Anatomie des Menschen, hrsg. v. W. v. Möllendorff, Bd. 4, Teil 1, S. 917–1060. Berlin: Springer 1928.

    Google Scholar 

  • Guillemin, R.: On the hypothalmic neurohumor which controls the release of luteinizing hormone. Proc. Internat. Union Physiol. Sci., XXIIth Internat. Congr. Leiden 1962, S.629.

  • Hamberger, B., T. Malmfors, and Ch. Sachs: Standardization of paraformaldehyde and of certain procedures for the histochemical demonstration of catecholamines. J. Histochem. Cytochem. 13, 147 (1965).

    Google Scholar 

  • Howe, A., and D. S. Maxwell: An electron microscopic study of the pars intermedia of the pituitary gland in the rat. J. Physiol. (Lond.) 183, 70–71 (1966).

    Google Scholar 

  • Iturriza, F. C.: Monoamines and control of the pars intermedia of the toad pituitary. Gen. comp. Endocr. 6, 19–25 (1966).

    Google Scholar 

  • Knoche, H.: Über das Vorkommen eigenartiger Nervenfasern (Nodulus-Fasern) in Hypophyse und Zwischenhirn von Hund und Mensch. Acta anat. (Basel) 18, 208–233 (1953).

    Google Scholar 

  • Kobayashi, Y.: Functional morphology of the pars intermedia of the rat hypophysis as revealed with electron microscope. Z. Zellforsch. 68, 155–171 (1965).

    Google Scholar 

  • Malmfors, T.: Studies on adrenergic nerves. Acta physiol. scand. 64, Suppl. 248, 1–93 (1965).

    Google Scholar 

  • Sano, Y., N. Ishizaki, and K. Ito: Untersuchungen über die nichtgomoriphilen Nervenfasern im Hypothalamus-Hypophysensystem. I. Über die Nodulus-Fasern (Knoche) im Hypophysentrichter des Hundes. Arch. histol. jap. 11, 1–10 (1956).

    Google Scholar 

  • - G. Odake, and T. Yonezawa: Fluorescence microscopic observations of catecholamines in cultures of the sympathetic chain. Z. Zellforsch. (in press) (1967a).

  • —, and S. Taketomo: Fluorescence microscopic and electron microscopic observations on the tuberohypophyseal tract. Neuroendocrin. 2, 30–42 (1967b).

    Google Scholar 

  • Sawyer, C. H., J. E. Markee, and J. W. Everett: Activation of the adenohypophysis by intravenous injections of epinephrine in the atropinized rabbit. Endocrinol. 46, 536–543 (1950).

    Google Scholar 

  • Scharrer, E.: Neurosecretion and anterior pituitary in the dog. Experientia (Basel) 10, 264–266 (1954).

    Google Scholar 

  • —: Endocrine and the central nervous system. I. Principles of neuroendocrine integration. Ass. Res. nerv. Dis. Proc. 43, 1–35 (1966).

    Google Scholar 

  • Spatz, H.: Das Hypophysen-Hypothalamus-System in seiner Bedeutung für die Fortpflanzung. Anat. Anz., Erg. 100, 46–86 (1953).

    Google Scholar 

  • Szentágothai, J., B. Flerkó, B. Mess, and B. Halász: Hypothalamic control of the anterior pituitary. Budapest: Akadémiai Kiadó 1962.

    Google Scholar 

  • —, and B. Halósz: Regulation des endokrinen Systems über den Hypothalamus. Nova Acta Leopoldina 28, 227–248 (1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Odake, G. Fluorescence microscopy of the catecholamine-containing neurons of the hypothalamohypophyseal system. Z. Zellforsch. 82, 46–64 (1967). https://doi.org/10.1007/BF00326100

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00326100

Keywords

Navigation