Skip to main content
Log in

DNA-protein relations during microsporogenesis of Tradescantia

  • Published:
Chromosoma Aims and scope Submit manuscript

Summary

  1. 1.

    The morphology of gametogenesis in Tradescantia paludosa is reviewed.

  2. 2.

    Microscopic photometric measurements indicate (a) a progressive increase in DNA content from the time of tetrad formation until microspore mitosis; (b) there is equipartition of DNA between generative and vegetative nuclei; (c) that there is a further increase in DNA content of the vegetative nucleus prior to anthesis, although it is not possible to measure DNA content in the generative nucleus at this stage; (d) that the pollen nuclei initially contain the diploid amount of DNA in a haploid set of chromosomes; and (e) there is very good agreement between the results of the present work and microchemical findings published elsewhere by Ogur and co-workers (1951).

  3. 3.

    A similar cycle obtains in the case of the proteins; the rate of synthesis during development is however much faster than in the case of the DNA. The data also indicate a rapid synthesis of protein by the vegetative nucleus immediately following the microspore division. Also there appears to be a correlation between the onset of cytoplasmic basophilia and the decrease in volume of the vegetative nucleus (presumably loss of protein), just prior to anthesis.

  4. 4

    Observations on acid and basic staining reactions are discussed in relation to growth and differentiation of the microspore and pollen grain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Alfert, M.: A cytochemical study of oogenesis and cleavage in the mouse. J. cellul. comp. Physiol. 86, 381–410 (1950).

    Google Scholar 

  • Altmann, R.: Über Nucleinsäuren. Arch. Physiol. 43, 524–536 (1889).

    Google Scholar 

  • Anderson, E., and K. Sax: A cytological analysis of selfsterility in Tradescantia. Bot. Gaz. 95, 609–621 (1934).

    Google Scholar 

  • Avery, O. T., C. M. McLeod and M. McCarty: Studies on the chemical nature of the substance inducing transformation of pneumococcal types. J. of exper. Med. 79, 137–157 (1944).

    Google Scholar 

  • Biesele, J. J.: Chromosome complexity in regenerating rat liver. Canc. Res. 4, 232–235 (1944).

    Google Scholar 

  • Boivin, A., A. Delaunay, R. Vendrely et Y. Lehoult: L'acide thymonucléique polimerisé, principe paraissant susceptible de déterminer la spécificité serologique et l'équipement enzymatique des bacteries. Experientia 1, 334–335 (1945).

    Google Scholar 

  • Boivin, A., R. Vendrely et C. Vendrely: L'acide désoxyribonucleique du noyau cellulaire, dépositaire des caractères héréditaires: arguments d'ordre analytique. C. r. Acad. Sci. Paris 226, 1061–1063 (1948).

    Google Scholar 

  • Caspersson, T.: Über den chemischen Aufbau der Strukturen des Zellkernes. Skand. Arch. Physiol. (Berl. u. Lpz.) 73, Suppl. 8 (1936).

  • Caspersson, T.: Die Eiweißverteilung in den Strukturen des Zellkerns. Chromosoma 1, 562–604 (1940).

    Google Scholar 

  • Caspersson, T.: The relations between nucleic acid and protein synthesis. Symp. Soc. exper. Biol. 1, 127–151 (1947).

    Google Scholar 

  • Caspersson, T.: Cell growth and cell function, a cytochemical study. New York: W. W. Norton & Co. Inc. 1950.

  • Chapman, L. M., D. Greenberg and G. Schmidt: Studies on the nature of combination between certain acid dyes and proteins. J. of biol. Chem. 72, 707–729 (1927).

    Google Scholar 

  • LaCour, L. F.: Differentiation in the pollen grain. Heredity 3, 319–337 (1949).

    Google Scholar 

  • Daly, M. M., A. E. Mirsky and H. Ris: The amino acid composition and some properties of histones. J. gen. Physiol. 34, 439–450 (1950).

    Google Scholar 

  • Dische, Z.: Über einige neue charakteristische Farbreaktionen der Thymonucleinsäure. Mikrochemie 8, 4–32 (1930).

    Google Scholar 

  • Feulgen, R., u. H. Rossenbeck: Mikroskopisch-chemischer Nachweis einer Nukleinsäure von Typus der Thymonukleinsäure. Z. physiol. Chem 135, 203–248 (1924).

    Google Scholar 

  • Flax, M. H., and M. M. Himes: A microspectrophotometric analysis of the metachromatic staining of nucleic acids in tissues. J. nat. Canc. Inst. Wash. 1951.

  • Folin, O., and V. Ciocalteu: On tyrosine and tryptophane determinations in proteins. J. of biol. Chem. 73, 627–650 (1927).

    Google Scholar 

  • Fraenkel-Conrat, H., and M. Cooper: The use of dyes for the determination of acid and basic groups in proteins. J. of biol. Chem. 154, 239–246 (1946).

    Google Scholar 

  • Geitler, L.: Beobachtungen über die erste Teilung im Pollenkorn der Angiospermen. Planta (Berl.) 24, 361–385 (1935).

    Google Scholar 

  • Gibbs, H. D.: Phenol tests. J. of biol. Chem. 71, 445–459 (1926).

    Google Scholar 

  • Hertwig, G.: Die Vielwertigkeit der Speicheldrüsenkerne und -chromosomen bei Drosophila melanogaster. Z. Abstammgslehre 70, 496–501 (1934).

    Google Scholar 

  • Hollaender, A., and W. D. Claus: Bactericidal action of ultraviolet light. J. gen. Physiol. 19, 753–765 (1936).

    Google Scholar 

  • Hollaender, A., and C. W. Emmons: Production of mutations in fungi by ultraviolet light. Cold Spring Harbor, Symp. quant. Biol. 9, 179–186 (1941).

    Google Scholar 

  • Huskins, G. L., and L. M. Steinitz: The nucleus in differentiation and development. I. Heterochromatic bodies in energetic nuclei of Rhoeo roots. J. Hered. 39, 34–35 (1948).

    Google Scholar 

  • Jacobj, W.: Die Zellkerngröße beim Menschen. Z. mikrosk.-anat. Forschg 38, 161–240 (1935).

    Google Scholar 

  • Johnson, G. T., and R. E. Peck: Observations on the development of the male gametophyte in certain monocots. Ann. miss. bot. Gdns. 24, 161–174 (1937).

    Google Scholar 

  • Kaufmann, B. P., H. Gay and M. R. McDonald: Localisation of cellular proteins by enzymatic hydrolysis. Cold Spring Harbor Symp. quant. Biol. 14, 85–91 (1949).

    Google Scholar 

  • Koller, P. C.: The experimental modification of nucleic acid systems in the cell. Symp. Soc. exper. Biol. 1, 270–290 (1947).

    Google Scholar 

  • Korson, R.: A microspectrophotometric study of red cell nuclei during pyknosis. J. of exper. Med. 93, 121–128 (1951).

    Google Scholar 

  • Kossel, A.: The Protamines and Histones. New York: Longmans 1928.

    Google Scholar 

  • Leuchtenberger, C.: A cytochemical study of pycnotic nuclear degeneration. Chromosoma 3, 449–473 (1950).

    Google Scholar 

  • Leuchtenberger, C., R. Vendrely and C. Vendrely: A comparison of the content of desoxyribose nucleic acid (DNA) in isolated animal nuclei by cytochemical and chemical methods. Proc. nat. Acad. Sci. U.S.A. 37, 33–38 (1951).

    Google Scholar 

  • Levene, P. A., L. A. Mikeska and T. Mori: On the carbohydrate of thymonucleic acid. J. of biol. Chem. 85, 785–787 (1930).

    Google Scholar 

  • Maheshwari, P.: The male gametophyte of angiosperms. Bot. Rev. 15, 1–75 (1949).

    Google Scholar 

  • Mazia, D.: Enzyme studies on chromosomes. Cold Spring Harbor Symp. quant. Biol. 9, 40–46 (1941).

    Google Scholar 

  • Miescher, F.: Die histochemischen und physiologischen Arbeiten von Friedrich Miescher. Leipzig: F. C. W. Vogel 1897.

    Google Scholar 

  • Monné, L. and D. B. Slautterback: The disappearance of protoplasmic acidophilia upon deamination. Ark. Zool. 1, 455–462 (1951).

    Google Scholar 

  • Ogur, M., R. O. Erickson, G. U. Rosen, K. B. Sax and C. Holden: Nucleic acids in relation to cell division in Lilium longifolium. Exper. Cell. Res. 2, 73–89 (1951).

    Google Scholar 

  • Ogur, M., and G. U. Rosen: The nucleic acids of plant tissues. I. The extraction and estimation of desoxypentose and pentose nucleic acid. Arch. of Biochem. 25, 262–276 (1950).

    Google Scholar 

  • Painter, T. S.: Cell growth and nucleic acids in the pollen of Rhoeo discolor. Bot. Gaz. 105, 58–68 (1943).

    Google Scholar 

  • Painter, T. S., and E. Reindorp: Endomitosis in the nurse cells of the ovary of Drosophila melanogaster. Chromosoma 1, 276–283 (1939).

    Google Scholar 

  • Pasteels, J., et L. Lison: Recherches histophotometriques sur la teneur en acide desoxyribosenucleique au cours de mitoses somatiques. Archives de Biol. 61, 445–474 (1950).

    Google Scholar 

  • Pollister, A. W.: Quelques méthodes de cytologie chimique quantitative. Rev. d'Hematol. 5, 527–554 (1950).

    Google Scholar 

  • - A critique of cytochemical methods. The biological effects of radiations, 2. Aufl. 1951.

  • Pollister, A. W., and A. E. Mirsky: A cytochemical method for localisation and determination of protein in the presence of nucleic acid. Anat. Rec. 94, 346 (1946).

    Google Scholar 

  • Pollister, A. W., and M. J. Moses: A simplified apparatus for photometric analysis and photomicrography. J. gen. Physiol. 32, 567–577 (1949).

    Google Scholar 

  • Pollister, A. W., and H. Ris: Nucleoprotein determination in cytological preparations. Cold Spring Harbor Symp. quant. Biol. 12, 147–157 (1947).

    Google Scholar 

  • Pollister, A. W., H. H. Swift and M. Alfert: Studies on the desoxypentose nucleic acid content of animal nuclei. J. cellul. a. comp. Physiol. 1951.

  • Ris, H., and A. E. Mirsky: Quantitative cytochemical determination of desoxyribonucleic acid with the Feulgen nucleal reaction. J. gen. Physiol. 33, 125–145 (1949).

    Google Scholar 

  • Sax, K.: Effects of variations in temperature on nuclear and cell division in Tradescantia. Amer. J. Bot. 24, 218–225 (1937).

    Google Scholar 

  • Sax, K., and H. W. Edmonds: Development of the male gametophyte in Tradescantia. Bot. Gaz. 95, 156–163 (1933).

    Google Scholar 

  • Schneider, W. C.: Phosphorus compounds in animal tissues. I. Extraction and estimation of desoxypentose nucleic acid and of pentose nucleic acid. J. of biol. Chem. 161, 293–303 (1945).

    Google Scholar 

  • Schrader, P., and C. Leuchtenberger: Variation in the amount of desoxyribose nucleic acid in different tissues of Tradescantia. Proc. nat. Acad. Sci. U.S.A. 35, 464–468 (1949).

    Google Scholar 

  • Schrader, P., and C. Leuchtenberger: A cytochemical analysis of the functional interrelations of various cell structures in Arvelius albopunctatus (de Geer). Exper. Cell. Res. 1, 421–452 (1950).

    Google Scholar 

  • Schrader, P., and C. Leuchtenberger: The cytology and chemical nature of some constituents of the developing sperm. Chromosoma 4, 404–428 (1951).

    Google Scholar 

  • Sharp, L. W.: Introduction to cytology, 3. Aufl. New York u. London: McGraw-Hill Book Company Inc. 1933.

    Google Scholar 

  • Di Stefano, H. S.: A cytochemical study of the Feulgen nucleal reaction. Chromosoma 3, 282–301 (1948).

    Google Scholar 

  • Stowell, R. E.: Feulgen reaction for thymonucleic acid. Stain Technol. 20, 45–56 (1945).

    Google Scholar 

  • Suita, N.: Studies on the male gametophyte of angiosperms. II. Differentiation and behaviour of the vegetative and generative elements in the pollen grains of Crinum. Cytologia, Fujii Jub. 2, 920–933 (1937).

    Google Scholar 

  • Swift, H. H.: The desoxypentose nucleic acid content of animal nuclei. Anat. Rec. 105, 17–18 (1949).

    Google Scholar 

  • Swift, H. H.: The desoxyribose nucleic acid content of animal nuclei. Physiologic. Zool. 23, 169–198 (1950a).

    Google Scholar 

  • Swift, H. H.: The constancy of desoxyribose nucleic acid in plant nuclei. Proc. nat. Acad. Sci. U.S.A. 36, 643–654 (1950b).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

I wish to express my deep appreciation to Professors Franz Schrader and Arthur W. Pollister for their guidance and criticisms throughout the course of this work.— Thanks are also due to Professor C. L. Huskins of the University of Wisconsin for his kindness in supplying the stock plants, and to the Botany Department of Columbia University which generously provided greenhouse facilities. —The work was done while the author was a McCallum Fellow of Columbia University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bryan, J.H.D. DNA-protein relations during microsporogenesis of Tradescantia. Chromosoma 4, 369–392 (1950). https://doi.org/10.1007/BF00325780

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00325780

Keywords

Navigation