Skip to main content
Log in

Dissociative adsorption of alkanes on clean and sulfur-modified nickel surfaces

  • Dynamics And Kinetics Of Interface Reactions
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Recent studies of the dissociative adsorption of methane on clean Ni(111), Ni(100), Ni(110), and sulfur-modified Ni(100), as well as ethane, propane, and n-butane on Ni(100) have been carried out under the high incident flux conditions of 1.00 Torr methane, 0.10 Torr ethane, 0.01 Torr propane, and 0.001 Torr n-butane, respectively. It has been found that the activation energies for these processes range from 3.1±1.0 to 13.3±1.5 kcal mol−1. A comparison with the results of corresponding molecular beam studies suggests that the effects of vibrational energy on sticking probabilities must be accounted for and the sticking probabilities of molecules with very low normal kinetic energies must be accurately known when attempting to model high pressure processes using molecular beam techniques. While dissociation of ethane, propane, and n-butane on Ni(100) is believed to proceed primarily via a trapped molecular precursor, the results on sulfur-modified Ni(100) surface indicate that the “direct” channel to methane dissociation likely dominates and the contribution from the trapped molecular precursor mechanism is likely relatively small, with the sulfur atoms poisoning this reaction by a simple site blocking mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.G. Bergman: Science 223, 902 (1984)

    Google Scholar 

  2. M.B. Lee, Q.Y. Yang, S.L. Tang, S.T. Ceyer: J. Chem. Phys. 85, 1693 (1986)

    Google Scholar 

  3. S.T. Ceyer, J.D. Beckerle, M.B. Lee, S.L. Tang, Q.Y. Yang, M.A. Hines: J. Vac. Sci. Technol. A 5, 501 (1987)

    Google Scholar 

  4. M.B. Lee, Q.Y. Yang, S.T. Ceyer: J. Chem. Phys. 87, 2724 (1987)

    Google Scholar 

  5. A.V. Hamza, R.J. Madix: Surf. Sci. 179, 25 (1987)

    Google Scholar 

  6. T.P. Beebe, Jr., D.W. Goodman, B.D. Kay, J.T. Yates, Jr.: J. Chem. Phys. 87, 2305 (1987)

    Google Scholar 

  7. A.G. Sault, D.W. Goodman: J. Chem. Phys. 88, 7232 (1988)

    Google Scholar 

  8. X.D. Jiang, D.W. Goodman: Catal. Lett. 4, 173 (1990)

    Google Scholar 

  9. D.W. Goodman, R.D. Kelley, T.E. Madey, J.T. Yates, Jr.: J. Catal. 63, 226 (1980)

    Google Scholar 

  10. D.W. Goodman: J. Vac. Sci. Technol. 20, 522 (1982)

    Google Scholar 

  11. D.W. Goodman: Acc. Chem. Res. 17, 194 (1984)

    Google Scholar 

  12. F.C. Schouten, E.W. Kaleveld, G.A. Bootsma: Surf. Sci. 63, 460 (1977)

    Google Scholar 

  13. F.C. Schouten, O.L.J. Gijzeman, G.A. Bootsma: Surf. Sci. 87, 1 (1979)

    Google Scholar 

  14. D.W. Goodman, R.D. Kelley, T.E. Madey, J.M. White: J. Catal. 64, 479 (1980)

    Google Scholar 

  15. C.T. Rettner, L.A. DeLouise, D.J. Auerbach: J. Chem. Phys. 85, 1131 (1986)

    Google Scholar 

  16. A.V. Hamza, R.J. Madix: Private communication

  17. J.R. Rostrup-Nielsen: Catalytic Steam Reforming (Springer, Berlin 1984), reprinted from Vol. 5 of series Catalysis, Science and Technology, 1983, ed. by J.R. Anderson, M. Boudart

  18. H.D. Hagstrum, G.E. Becker: Phys. Rev. Lett. 22, 1054 (1969)

    Google Scholar 

  19. H.D. Hagstrum, G.E. Becker: J. Chem. Phys. 54, 1015 (1971)

    Google Scholar 

  20. G.B. Fisher: Surf. Sci. 62, 31 (1977)

    Google Scholar 

  21. M. Kiskinova, D.W. Goodman: Surf. Sci. 108, 64 (1981)

    Google Scholar 

  22. A. Frennet, G. Lienard, A. Crucq, L. Degols: Surf. Sci. 80, 412 (1979)

    Google Scholar 

  23. D.W. Goodman, M. Kiskinova: Surf. Sci. 105, L 265 (1981)

    Google Scholar 

  24. D.W. Goodman: J. Vac. Sci. Technol. A 2, 873 (1984)

    Google Scholar 

  25. S. Brennan, J. Stöhr, R. Jaeger: Phys. Rev. B 24, 4871 (1981)

    Google Scholar 

  26. S. Lehwald, M. Rocca, H. Ibach, T.S. Rahman: J. Electron Spectrosc. Rel. Phenom. 38, 29 (1986)

    Google Scholar 

  27. W.B. Pearson: Handbook of Lattice Spacings and Structures of Metals and Alloys, Vol. 2 (Pergamon, New York 1967)

    Google Scholar 

  28. J.T. Yates, Jr., T.E. Madey: Surf. Sci. 28, 437 (1971)

    Google Scholar 

  29. J.R. Rostrup-Nielsen: J. Catal. 85, 31 (1984)

    Google Scholar 

  30. H.-P. Steinruck, A.V. Hamza, R.J. Madix: Surf. Sci. 173, L 571 (1986)

    Google Scholar 

  31. A.V. Hamza, H.-P. Steinruck, R.J. Madix: J. Chem. Phys. 86, 6505 (1987)

    Google Scholar 

  32. A.V. Hamza, H.-P. Steinruck, R.J. Madix: J. Chem. Phys. 85, 7494 (1986)

    Google Scholar 

  33. P.D. Szuromi, J.R. Engstrom, W.H. Weinberg: J. Chem. Phys. 80, 508 (1984)

    Google Scholar 

  34. T.S. Wittrig, P.D. Szuromi, W.H. Weinberg: J. Chem. Phys. 76, 3305 (1982)

    Google Scholar 

  35. P.D. Szuromi, J.R. Engstrom, W.H. Weinberg: J. Phys. Chem. 89, 2497 (1985)

    Google Scholar 

  36. M. Salmeron, G.A. Somorjai: J. Phys. Chem. 85, 3835 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, X., Goodman, D.W. Dissociative adsorption of alkanes on clean and sulfur-modified nickel surfaces. Appl. Phys. A 51, 99–107 (1990). https://doi.org/10.1007/BF00324271

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00324271

PACS

Navigation