Skip to main content
Log in

Laser-induced etching of titanium by Br2 and CCl3Br at 248 nm

  • Surfaces And Multilayers
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A quartz crystal microbalance (QCM) has been used to study the KrF* excimer laser-induced etching of titanium by bromine-containing compounds. The experiment consists of focusing the pulsed UV laser beam at normal incidence onto the surface of a quartz crystal coated with 1 μm of polycrystalline titanium. The removal of titanium from the surface is monitored in real time by measuring the change in the frequency of the quartz crystal. The dependence of the etch rate on etchant pressure and laser fluence was measured and found to be consistent with a two-step etching mechanism. The initial step in the etching of titanium is reaction between the etchant and the surface to form the etch product between laser pulses. The etch product is subsequently removed from the surface during the laser pulse via a laser-induced thermal desorption process. The maximum etch rate obtained in this work was 6.2 Å-pulse−1, indicating that between two and three atomic layers of Ti can be removed per laser pulse. The energy required for desorption of the etch product is calculated to be 172 kJ-mole−1, which is consistent with the sublimation enthalpy of TiBr2 (168 kJ-mole−1). The proposed product in the etching of titanium by Br2 and CCl3Br is thus TiBr2. In the etching of Ti by Br2, formation of TiBr2 proceeds predominantly through the dissociative chemisorption of Br2. In the case of etching with CCl3Br, TiBr2 is formed via chemisorption of Br atoms produced in the gas-phase photodissociation of CCl3Br.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See for example, R. Srinivasan, B. Braren: Appl. Phys. A 45, 289 (1988)

    Google Scholar 

  2. R. Kullmer, D. Bauerle: Appl. Phys. A 47, 377 (1988)

    Google Scholar 

  3. J.L. Peyre, Ch. Vannier, D. Riviere, G. Villela: Appl. Surf. Sci. 36, 313 (1989)

    Google Scholar 

  4. T. Baller, D.J. Oostra, A.E. de Vries, G.N.A. van Veen: J. Appl. Phys. 60, 2321 (1986)

    Google Scholar 

  5. G. Koren, J.E. Hurst: Appl. Phys. A 45, 301 (1988)

    Google Scholar 

  6. P.D. Brewer, D. McClure, R.M. Osgood: Appl. Phys. Lett. 47, 310 (1985)

    Google Scholar 

  7. For a review of the literature prior to 1983 see, T.J. Chuang: Surf. Sci. Rep. 3, 1 (1983)

    Google Scholar 

  8. W. Sesselmann, T.J. Chuang: J. Vac. Sci. Technol. B 3, 1507 (1985)

    Google Scholar 

  9. W. Sesselmann, E.E. Marinero, T.J. Chuang: Appl. Phys. A 41, 209 (1986)

    Google Scholar 

  10. W. Sesselmann, T.J. Chuang: Surf. Sci. 162, 1007 (1985)

    Google Scholar 

  11. J.J. Ritsko, F. Ho, J. Hurst: Appl. Phys. Lett. 53, 78 (1988)

    Google Scholar 

  12. G. Koren, F. Ho, J.J. Ritsko: Appl. Phys. Lett. 46, 1006 (1985)

    Google Scholar 

  13. G.L. Loper, M.D. Tabat: Appl. Phys. Lett. 46, 654 (1985)

    Google Scholar 

  14. T.S. Baller, G.N.A. van Veen, J. Dieleman: J. Vac. Sci. Technol. A 6, 1409 (1988)

    Google Scholar 

  15. M. Rothschild, J.H.C. Sedlacek, D.J. Ehrlich: J. Vac. Sci. Technol. B 5, 1400 (1987)

    Google Scholar 

  16. M. Grunze, P.A. Dowben: Appl. Surf. Sci. 10, 209 (1982)

    Google Scholar 

  17. G. Sauerbrey: Z. Phys. 155, 206 (1959)

    Google Scholar 

  18. C.-S. Lu, O. Lewis: J. Appl. Phys. 43, 4385 (1972)

    Google Scholar 

  19. H.H.G. Jellinek, R. Srinivasan: J. Phys. Chem. 88, 3048 (1984)

    Google Scholar 

  20. J.H. Brannon, J.R. Lankard, A.I. Baise, F. Burns, J. Kaufman: J. Appl. Phys. 58, 2036 (1985)

    Google Scholar 

  21. T. Nakayama: Surf. Sci. 133, 101 (1983)

    Google Scholar 

  22. D. Burgess, P.C. Stair, E. Weitz: J. Vac. Sci. Technol. A 4, 1362 (1986)

    Google Scholar 

  23. Y.S. Touloukian, R.W. Powell, C.Y. Ho, M.C. Nicolaou: Thermophysical Properties of Matter, Vol. 1 (IFI/Plenum, New York 1970)

    Google Scholar 

  24. Y.S. Touloukian, R.W. Powell, C.Y. Ho, P.G. Klemens: Thermophysical Properties of Matter, Vol. 18 (IFI/Plenum, New York 1973)

    Google Scholar 

  25. J.H. Weaver, C. Krafka, W.W. Lynch, E.E. Koch: Optical Properties of Metals, Pt. 1, Fachinformationszentrum Energie, Physik, Mathematik GmbH, Karlsruhe, 1981

    Google Scholar 

  26. I.H. Kahn: Surf. Sci. 48, 537 (1975)

    Google Scholar 

  27. J.R. Anderson, N. Thompson: Surf. Sci. 28, 84 (1971)

    Google Scholar 

  28. M.P. Cox, J.S. Foord, R.M. Lambert: Surf. Sci. 129, 375 (1983)

    Google Scholar 

  29. J.R. Anderson, M.S.J. Gani: J. Phys. Chem. Solids 23, 1087 (1962)

    Google Scholar 

  30. T. Smith: J. Electrochem. Soc. 119, 1398 (1972)

    Google Scholar 

  31. R.J.H. Clark: In Comprehensive Inorganic Chemistry, Vol. 3, ed. by J.C. Bailar Jr., H.J. Emeleus, R. Nyholm, A.F. Trotman-Dickenson, (Pergamon, Oxford 1973) p. 364

    Google Scholar 

  32. R.B. Hall: J. Phys. Chem. 91, 1007 (1987)

    Google Scholar 

  33. R. Colton, J.H. Canterford: Halides of the First Row Transition Metals, (Wiley, London 1969) p. 67

    Google Scholar 

  34. H. Okabe: The Photochemistry of Small Molecules, (Wiley, New York 1978) p. 186 and references therein

    Google Scholar 

  35. S. Hautecloque: J. Chim. Phys. Phys. Chim. Biol. 64, 1526 (1967)

    Google Scholar 

  36. H.W. Sidebottom, J.M. Tedder, J.C. Walton: J. Chem. Soc. Faraday Trans. 65, 755 (1968)

    Google Scholar 

  37. C.R. Moylan, T.J. Chuang: In Laser Processes for Microelectronic Applications, ed. by. J.J. Ritsko, D.J. Ehrlich, M. Kashiwagi (The Electrochemical Society, Pennington N.J. 1988) pp. 123–129

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tyndall, G.W., Moylan, C.R. Laser-induced etching of titanium by Br2 and CCl3Br at 248 nm. Appl. Phys. A 50, 609–615 (1990). https://doi.org/10.1007/BF00323455

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00323455

PACS

Navigation