Skip to main content
Log in

An ultrastructural analysis of the paraphysis cerebri in newts

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

Paraphyses from the brains of adult Triturus pyrrhogaster and adult and larval Taricha torosa have been examined by light and electron microscopy.

Adjacent epithelial cells of the CSF-filled paraphyseal saccules are partially separated by extensive intercellular compartments containing variable amounts of granular, electron dense material. Each compartment is open basally against the basement membrane but narrows apically to a tight junction. Finger-like projections of neighboring cells interdigitate across the compartments. Toward the apical surface of the epithelium, the interdigitations are attached to each other by numerous desmosomes. The interdigitations and basal infoldings of the plasma membrane impart a paraphyseal morphology resembling cells known to be involved in fluid transport. Luminal surfaces often bulge and are microvillous near tight junctions. A single cilium is common. Interior cytoplasmic components include scattered mitochondria, smooth and rough endoplasmic reticulum, Golgi complexes, basal lipid accumulations, and variable amounts of glycogen granules. External to the epithelial cells, unmyelinated nerve bundles course through the connective tissue separating the epithelium from the underlying venous sinusoidal network. Presumed mast cells are present in the connective tissue in addition to fibroblasts.

Thorotrast particles (colloidal thorium dioxide) introduced into the venous sinusoids rapidly traverse the endothelium and accumulate at the basement membrane of the paraphyseal epithelium. After two hours, the smallest particles of the tracer suspension have penetrated the basement membrane and are found scattered through the length of the intercellular compartments. Thorotrast neither invades cytoplasmic components of the epithelium nor crosses tight junctions to enter the CSF, even when the particles circulate for as long as nine hours before fixation.

These findings are discussed in relation to previous light microscopical examinations and theories on possible paraphysis function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature

  • Adams, C. W. M., and J. C. Sloper: The hypothalamic elaboration of posterior pituitary principles in man, the rat, and dog. Histochemical evidence derived from a performic acid-alcian blue reaction for cystine. J. Endocr. 13, 221–228 (1956).

    Google Scholar 

  • Ariëns-Kappers, J.: The development and structure of the paraphysis cerebri in urodeles with experiments on its function in Amblystoma mexicanum. J. comp. Neurol. 92, 93–128 (1950).

    Google Scholar 

  • Ariëns-Kappers, J.: The development of the paraphysis cerebri in man with comments on its relationship to the intercolumnar tubercle and its significance for the origin of cystic tumors in the third ventricle. J. comp. Neurol. 102, 425–510 (1955).

    Google Scholar 

  • —: On the development, structure and function of the paraphysis cerebri. In: Progress in Neurobiology (Proceedings of the First International Meeting of Neurobiologists). Amsterdam: Elsevier, Publ. Co. 1956a.

    Google Scholar 

  • —: On the presence of periodic acid Schiff positive substances in the paraphysis cerebri, the choroid plexuses and the neuroglia of Amblystoma mexicanum. Experientia (Basel) 12, 187–189 (1956b).

    Google Scholar 

  • —, I. B. Ten Kate, and H. J. De Bruyn: On mast cells in the choroid plexus of the Axolotl (Amblystoma mexicanum). Z. Zellforsch. 48, 617–634 (1958).

    Google Scholar 

  • Bennett, H. S., and J. H. Luft: s-Collidine as a basis for buffering fixatives. J. biophys. biochem. Cytol. 6, 113–114 (1959).

    Google Scholar 

  • Bulger, R. E.: Fine structure of the rectal (salt-secreting) gland of the spiny dogfish, Squalus acanthias. Anat. Rec. 147, 95–127 (1963).

    Google Scholar 

  • —: Further specializations in the shape of epithelial cells of the renal tubule. Anat. Rec. 148, 265–266 (1964).

    Google Scholar 

  • Carpenter, S.: Personal communication 1964.

  • Dorn, E.: Über den Feinbau der Paraphyse von Protopterus annectens. Z. Zellforsch. 46, 115–120 (1957).

    Google Scholar 

  • Gabe, M.: Sur quelque applications de la coloration par la fuchsine-paraldéhyde. Bull. Micr. appl. 3, 153–162 (1953).

    Google Scholar 

  • —: Signification histochimique de certaines affinités tinctoriales du produit de neurosécrétion hypothalamique. C. R. Soc. Biol. (Paris) 149, 462–464 (1955).

    Google Scholar 

  • Hampton, J. C.: An electron microscope study of the hepatic uptake and execretion of submicroscopic particles injected into the blood stream and into the bile duct. Acta anat. (Basel) 32, 262–291 (1958).

    Google Scholar 

  • Herrick, C. J.: The membranous parts of the brain, meninges and their blood vessels in Amblystoma. J. comp. Neurol. 61, 297–346 (1935).

    Google Scholar 

  • —: The Brain of the Tiger Salamander. Chicago: Chicago University Press 1948.

    Google Scholar 

  • Kamer, J.C. Van de: Over de ontwikkeling, de determinatie en de betekenis van de epiphyse en de paraphyse van de amphibien. Arnhem: van der Wiel 1949.

    Google Scholar 

  • Kelly, D. E.: Ultrastructural studies on paraphysis cerebri of newts. Anat. Rec. 148, 299 (1964).

    Google Scholar 

  • Luft, J. H.: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol. 9, 409–414 (1961).

    Google Scholar 

  • —: Appearance of lateral chromatic aberration with metal-stained thin sections, and the compensation of this field error. J. appl. Physiol. 34, 2513 (1963).

    Google Scholar 

  • —: Fine structure of the vascular wall, pp. 3–14, Evolution of the Atherosclerotic Plaque. Chicago: Chicago University Press 1964.

    Google Scholar 

  • Mautner, W.: Lebendbeobachtungen über den Epiphysenkreislauf von Anuren. Naturwissenschaften 3, 68 (1964).

    Google Scholar 

  • Millonig, G.: A modified procedure for lead staining of thin sections. J. biophys. Biochem. Cytol. 11, 736–739 (1961).

    Google Scholar 

  • Oksche, A.: Histologische Untersuchungen über die Bedeutung des Ependyms, der Glia und der Plexus Chorioidei für den Kohlenhydratstoffwechsel des ZNS. Z. Zellforsch. 48, 74–129 (1958).

    Google Scholar 

  • Olsson, R.: The relationship between ciliary rootlets and other cell structures. J. Cell Biol. 15, 596–599 (1962).

    Google Scholar 

  • Pappas, G. D., and G. K. Smelser: The fine structure of the ciliary epithelium in relation to aqueous humor secretion, pp. 453–467. In: The Structure of the Eye (G. Smelser, ed.). New York: Academic Press 1961.

    Google Scholar 

  • Pearse, A. G. E.: Histochemistry, Theoretical and Applied. London: Churchill Ltd. 1960.

    Google Scholar 

  • Pease, D. C.: Infolded basal plasma membranes found in epithelia noted for their water transport. J. biophys. biochem. Cytol. 2 (Suppl), 203–208 (1956).

    Google Scholar 

  • Revel, J. P.: Electron microscopy of glycogen. J. Histochem. Cytochem. 12, 104–114 (1964).

    Google Scholar 

  • Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).

    Google Scholar 

  • Rhodin, J.: Electron microscopy of the kidney. Amer. J. Med. 24, 661–675 (1958).

    Google Scholar 

  • Richardson, K. C., L. Jarett, and E. H. Finke: Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol. 35, 313–323 (1960).

    Google Scholar 

  • Romanes, C. J.: The staining of nerve fibers in paraffin sections with silver. J. Anat. (Lond.) 84, 104–115 (1950).

    Google Scholar 

  • Roofe, P. G.: The endocranial blood vessels of Amblystoma tigrinum. J. comp. Neurol. 61, 257–293 (1935).

    Google Scholar 

  • —: The histology of the paraphysis of Amblystoma. J. Morph. 59, 1–10 (1936).

    Google Scholar 

  • Scharrer, E.: Die Bildung von Meningocyten und der Abbau von Erythrocyten in der Paraphyse der Amphibien. Z. Zellforsch. 23, 244–252 (1936).

    Google Scholar 

  • Setoguti, T., and H. Nakamura: The fine structure of tissue mast cells in Triturus pyrrhogaster (Boie). Arch. histol. jap. 23, 311–335 (1963).

    Google Scholar 

  • Trost, E.: Die Entwicklung und Histologie der Epiphyse, der Paraphyse, des Velum transversums des Dorsalsackes und des subcommissuralen Organs bei Anguis fragilis, Chalcides ocellatus, und Natrix natrix. Acta anat. (Basel) 18, 326–342 (1953).

    Google Scholar 

  • Trump, B. F., E. A. Smuckler, and E. P. Benditt: A method for staining epoxy sections for light microscopy. J. Ultrastruct. Res. 5, 343–348 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The author wishes to acknowledge with thanks the technical assistance provided by Dr. Anita Hendrickson during several portions of this study, and also the kind interest of Drs. N. B. Everett, Daniel Szollosi, and Richard L.Wood who critically read the manuscript. The research reported on these pages was supported by a research grant (GB-1592) from the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelly, D.E. An ultrastructural analysis of the paraphysis cerebri in newts. Zeitschrift für Zellforschung 64, 778–803 (1964). https://doi.org/10.1007/BF00323310

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00323310

Keywords

Navigation