Skip to main content
Log in

Effects of various treatments on microtubules and axial units of lung-fluke spermatozoa

  • Published:
Zeitschrift für Zellforschung und Mikroskopische Anatomie Aims and scope Submit manuscript

Summary

Sperm of the frog lung-fluke, Haematoloechus medioplexus, were treated in various ways and their microtubules and axial units were subsequently studied in sectioned and negatively-stained material. Microtubules and axial units were generally unaffected by exposure to colchicine, cold, and KCl, although with KCl certain lateral projections from doublet tubule A appeared more prominent in negatively-stained preparations. Both mercaptoethanol and urea have a dissociative effect on doublet tubules and microtubules, with doublet tubules being the more sensitive. Pepsin-HCl initially digests the dense region associated with the A tubule of a doublet pair and the core of the axial unit. Microtubules and B tubules of doublet units are later digested; in microtubules, there appears to be a proteinaceous material in the lucent central region which is digested before disappearance of the wall of the microtubule. Further evidence is presented indicating that the characteristically helical wall of the microtubules is made up of spherical subunits about 50 Å in diameter, with about 8 subunits in one turn of the helix. Under certain conditions, the helical structure may be altered to form a wall comprised of longitudinal filaments. It is emphasized that not all microtubules are structurally and chemically equivalent, and it follows that all microtubules do not share a common function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aikawa, M.: Ultrastructure of the pellicular complex of Plasmodium fallax. J. Cell Biol. 35, 103–113 (1967).

    Google Scholar 

  • Anderson, W. A., and R. A. Ellis: Ultrastructure of Trypanosoma lewisi: flagellum, microtubules, and the kinetoplast. J. Protozool. 12, 483–499 (1965).

    Google Scholar 

  • André, J., et J. Thiery: Mise en évidence d'une sous-structure fibrillaire dans les filaments axonématiques des flagelles. J. Microscopie 2, 71–80 (1963).

    Google Scholar 

  • Barnicot, N. A.: A note on the structure of spindle fibres. J. Cell Sci. 1, 217–222 (1966).

    Google Scholar 

  • Behnke, O.: The effect of colchicine and sodium cacodylate on the spindle of dividing vertebrate cells. J. Ultractruct. Res. 12, 241–242 (1965).

    Google Scholar 

  • —: Incomplete microtubules observed in mammalian blood platelets during microtubule polymerization. J. Cell Biol. 34, 697–701 (1967).

    Google Scholar 

  • —, and A. Forer: Evidence for four classes of microtubules in individual cells. J. Cell Sci. 2, 169–192 (1967).

    Google Scholar 

  • —, and T. Zelander: Substructure in negatively stained microtubules of mammalian blood platelets. Exp. Cell Res. 43, 236–239 (1966).

    Google Scholar 

  • —: Filamentous substructure of microtubules of the marginal bundle of mammalian blood platelets. J. Ultrastruct. Res. 19, 147–165 (1967).

    Google Scholar 

  • Bennett, H. S., and J. H. Luft: s-Collidine as a basis for buffering fixatives. J. biophys. biochem. Cytol. 6, 113–114 (1959).

    Google Scholar 

  • Bernhard, W., N. Granboulan, G. Barski, et P. Tournier: Essais cytochimie ultrastructurale. Digestion de virus sur coupes ultrafines. C. R. Soc. Biol. (Paris) 252, 202–204 (1961).

    Google Scholar 

  • Borisy, G. G., and E. W. Taylor: The mechanism of action of colchicine. Binding of colchicine-3H to cellular protein. J. Cell Biol. 34, 525–533 (1967).

    Google Scholar 

  • —: The mechanism of action of colchicine. Colchicine binding to sea urchin eggs and the mitotic apparatus. J. Cell Biol. 34, 535–548 (1967).

    Google Scholar 

  • Burton, P. R.: Substructure of certain cytoplasmic microtubules: an electron microscopic study. Science 154, 903–905 (1966a).

    Google Scholar 

  • —: A comparative electron microscopic study of cytoplasmic microtubules and axial unit tubules in a spermatozoon and a protozoan. J. Morph. 120, 397–424 (1966b).

    Google Scholar 

  • —: Fine structure of the unique central region of the axial unit of lung-fluke spermatozoa. J. Ultrastruct. Res. 19, 166–172 (1967).

    Google Scholar 

  • Caulfield, J. B.: Effects of varying the vehicle for OsO4 fixation. J. biophys. biochem. Cytol. 3, 827–830 (1957).

    Google Scholar 

  • Dirksen, E. R.: The isolation and characterization of asters from artificially activated sea urchin eggs. Exp. Cell Res. 36, 256–269 (1964).

    Google Scholar 

  • Gall, J. G.: Microtubule fine structure. J. Cell Biol. 31, 639–643 (1966).

    Google Scholar 

  • Gibbons, I. R.: The organization of cilia and flagella. In: Molecular organization and biological function (J. M. Allen, ed.), p. 211–237. New York: Harper and Row 1967.

    Google Scholar 

  • Glauert, A. M., and J. A. Lucy: Electron microscopy of negatively-stained lipids. Protoplasma 63, 208–211 (1967).

    Google Scholar 

  • Grimstone, A. V., and A. Klug: Observations on the substructure of flagellar fibres. J. Cell Sci. 1, 351–362 (1966).

    Google Scholar 

  • Kane, R. E.: The mitotic apparatus. Identification of the major soluble component of the glycol-isolated mitotic apparatus. J. Cell Biol. 32, 243–253 (1967).

    Google Scholar 

  • Kerridge, D., R. W. Hörne, and A. M. Glauert: Structural components of flagella from Salmonella typhimurium. J. molec. Biol. 4, 227–238 (1962).

    Google Scholar 

  • Kiefer, B., H. Sakai, A. J. Solari, and D. Mazia: The molecular unit of the microtubules of the mitotic apparatus. J. molec. Biol. 20, 75–79 (1966).

    Google Scholar 

  • Lauffer, M. A.: Polymerization-depolymerization of tobacco mosaic virus protein. In: The molecular basis of neoplasm, p. 180. Austin: University of Texas Press 1962.

    Google Scholar 

  • Ledbetter, M. C., and K. R. Porter: Morphology of microtubules of plant cells. Science 144, 872–874 (1964).

    Google Scholar 

  • Lockwood, A. P. M.: “Ringer” solutions and some notes on the physiological basis of their ionic composition. Comp. Biochem. Physiol. 2, 241–289 (1961).

    Google Scholar 

  • Lowy, J., and J. Hanson: Electron microscope studies of bacterial flagella. J. molec. Biol. 11, 293–313 (1965).

    Google Scholar 

  • Lucy, J. A., and A. M. Glauert: Structure and assembly of macromolecular lipid complexes composed of globular micelles. J. molec. Biol. 8, 727–748 (1964).

    Google Scholar 

  • Luft, J. H.: Improvements in epoxy resin embedding methods. J. biophys. biochem. Cytol. 9, 409–414 (1961).

    Google Scholar 

  • Malawista, S. E., and K. G. Bensch: Human polymorphonuclear leukocytes: demonstration of microtubules and effect of colchicine. Science 156, 521–522 (1967).

    Google Scholar 

  • Mazia, D., and K. Dan: The isolation and biochemical characterization of the mitotic apparatus of dividing cells. Proc. nat. Acad. Sci. (Wash.) 38, 826–838 (1952).

    Google Scholar 

  • Meyer, H., and K. R. Porter: A study of Trypanosoma cruzi with the electron microscope. Parasitology 44, 16–23 (1954).

    Google Scholar 

  • Nelson, L.: Contractile proteins of marine invertebrate spermatozoa. Biol. Bull. 130, 378–386 (1966).

    Google Scholar 

  • Parsons, D. F.: Negative staining of thinly spread cells and associated virus. J. Cell Biol. 16, 620–626 (1963).

    Google Scholar 

  • Pease, D. C.: The ultrastructure of flagellar fibrils. J. Cell Biol. 18, 313–326 (1963).

    Google Scholar 

  • Peters, A., and J. E. Vaughn: Microtubules and filaments in the axons and astrocytes of early postnatal rat optic nerves. J. Cell Biol. 32, 113–119 (1967).

    Google Scholar 

  • Phillips, D. M.: Substructure of flagellar tubules. J. Cell Biol. 31, 635–638 (1966).

    Google Scholar 

  • Pickett-Heaps, J. D.: The effects of colchicine on the ultrastructure of dividing plant cells, xylem wall differentiation and distribution of cytoplasmic microtubules. Develop. Biol. 15, 206–236 (1967).

    Google Scholar 

  • Porter, K. R.: Cytoplasmic microtubules and their functions. In: Principles of biomolecular organization (G. E. W. Wolstenholme and M. O'Conner, eds.), CIBA Found. Symp., 308–345. Boston: Little, Brown & Co. 1966.

    Google Scholar 

  • Reynolds, E. S.: The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).

    Google Scholar 

  • Ringo, D. L.: The arrangement of subunits in flagellar fibers. J. Ultrastruct. Res. 17, 266–277 (1967).

    Google Scholar 

  • Robbins, E., and N. K. Gonatas: Histochemical and ultrastructural studies on HeLa cell cultures exposed to spindle inhibitors with special reference to the interphase cell. J. Histochem. Cytochem. 12, 704–711 (1964).

    Google Scholar 

  • Roth, L. E.: Electron microscopy of mitosis in amebae. III. Cold and urea treatments: a basis for tests of direct effects of mitotic inhibitors on microtubule formation. J. Cell Biol. 34, 47–59 (1967).

    Google Scholar 

  • Sabatini, D. D., K. Bensch, and R. J. Barrnett: Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J. Cell Biol. 17, 19–58 (1963).

    Google Scholar 

  • Sandborn, E., A. Szeberenyi, P. Messier, and P. Bois: A new membrane model derived from a study of filaments, microtubules and membranes. Rev. Canadienne Biol. 24, 243–276 (1965).

    Google Scholar 

  • Silver, M. D., and J. E. McKinstry: Morphology of microtubules in rabbit platelets. Z. Zellforsch. 81, 12–17 (1967).

    Google Scholar 

  • Slautterback, D. B.: Cytoplasmic microtubules. I. Hydra. J. Cell Biol. 18, 367–388 (1963).

    Google Scholar 

  • Sleigh, M. A.: The biology of cilia and flagella. New York: Pergamon Press (MacMillan) 1962. 242 pp.

    Google Scholar 

  • Stephens, R. E.: The mitotic apparatus. Physical chemical characterization of the 22S protein component and its subunits. J. Cell Biol. 32, 255–275 (1967).

    Google Scholar 

  • Stevens, R. E., F. L. Renaud, and I. R. Gibbons: Guanine nucleotide associated with the protein of the outer fibers of flagella and cilia. Science 156, 1606–1608 (1967).

    Google Scholar 

  • Taylor, E. W.: The mechanism of colchicine inhibition of mitosis. I. Kinetics of inhibition and the binding of H3-colchicine. J. Cell Biol. 25, 145–160 (1965).

    Google Scholar 

  • Tilney, L. G.: Microtubules in the asymmetric arms of Actinosphaerium and their response to cold, colchicine, and hydrostatic pressure. Anat. Rec. 151, 426 (1965).

    Google Scholar 

  • —, Y. Hiramoto, and D. Marsland: Studies on the microtubules in Heliozoa. III. A pressure analysis of the role of these structures in the formation and maintenance of the axopodia of Actinosphaerium nucleofilum (Barrett). J. Cell Biol. 29, 77–95 (1966).

    Google Scholar 

  • —, and K. R. Porter: Studies on the microtubules in Heliozoa. II. The effect of low temperature on these structures in the formation and maintenance of the axopodia. J. Cell Biol. 34, 327–343 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported by U.S. Public Health Service Grant AI-06448 and an institutional grant from the American Cancer Society.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burton, P.R. Effects of various treatments on microtubules and axial units of lung-fluke spermatozoa. Z. Zellforsch. 87, 226–248 (1968). https://doi.org/10.1007/BF00319722

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00319722

Keywords

Navigation