Skip to main content
Log in

Reissner's fibre supports the survival of chick cortical neurons in primary mixed cultures

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Reissner's fibre, a thread-like structure present in the central canal of the spinal cord, is a product of the condensation of specific glycoproteins that are released by specialized ependymal cells into the cerebrospinal fluid. These secretory ependymocytes constitute the subcommissural organ, a circumventricular organ that lines the roof of the third ventricle of the brain. The subcommissural organ/Reissner's fibre complex is a permanent structure in the vertebrate central nervous system. The addition of bovine Reissner's fibre itself or of soluble material released by Reissner's fibre to primary mixed cultures of chick cerebral cortical cells markedly enhances neuronal survival. The responsive cells have been identified as neurons by labelling them with antibodies to neurofilament proteins. This neuronal survival effect is dose-dependent and does not require the presence of serum in the culture medium. Affinity-purified polyclonal antibodies raised against bovine Reissner's fibre partially block the effect of Reissner's fibre on neuronal survival. These results suggest that Reissner's fibre is involved in developmental processes of the central nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ang LC, Bhaumick B, Munoz DG, Sass J, Juurlink BHJ (1992) Effects of astrocytes, insulin and insulin-like growth factor I on the survival of motoneurons in vitro. J Neurol Sci 109:168–172

    Google Scholar 

  • Baier H, Bonhoeffer F (1994) Attractive axon guidance molecules. Science 265:1541–1542

    Google Scholar 

  • Barde YA (1989) Trophic factors and neuronal survival. Neuron 2:1525–1534

    Google Scholar 

  • Brenneman DE, Neale EA, Foster GA, d'Autremont SW, Westbrook GL (1987) Nonneuronal cells mediate neurotrophic action of vasoactive intestinal peptide. J Cell Biol 104:1603–1610

    Google Scholar 

  • Bruel MT, Meiniel R, Meiniel A, David D (1987) Ontogenetical study of the chick embryo subcommissural organ by lectin histofluorescence and electron microscopy. J Neural Transm 70:145–168

    Google Scholar 

  • Dendy A, Nicholls DV (1910) On the occurrence of the mesocoelic recess in the human brain and its relation to the subcommissural organ of lower vertebrates, with special reference to the distribution of Reissner's fibre in the vertebrate series and its possible function. Proc R Soc Lond [Biol] 82:515–592

    Google Scholar 

  • Didier R, Meiniel R, Meiniel A (1992) Monoclonal antibodies as probes for the analysis of the secretory ependymal differentiation in the subcommissural organ of the chick embryo. Dev Neurosci 14:44–52

    Google Scholar 

  • D'Mello SR, Galli C, Ciotti T, Calissano P (1993) Induction of apoptosis in cerebellar granule neurons by low potassium: inhibition of death by insulin-like growth factor I and cAMP. Proc Natl Acad Sci USA 90:10989–10993

    Google Scholar 

  • Dodd J, Jessell TM (1988) Axon guidance and the patterning of neuronal projections in vertebrates. Science 242:692–699

    Google Scholar 

  • Engele J, Bohn MC (1991) The neurotrophic effects of fibroblast growth factors on dopaminergic neurons in vitro are mediated by mesencephalic glia. J Neurosci 11:3070–3078

    Google Scholar 

  • Ermisch A (1973) Zur Charakterisierung des Komplexes Subcommissuralorgan-Reissnerscher Faden und seiner Beziehungen zum Liquor unter besonderer Berücksichtigung autoradiographischer Untersuchungen sowie funktioneller Aspekte. Wiss Z Karl-Marx-Univ Leipzig Math Naturwiss R 22:297–336

    Google Scholar 

  • Fann MJ, Patterson PH (1994) Neuropoietic cytokines and activin A differentially regulate the phenotype of cultured sympathetic neurons. Proc Natl Acad Sci USA 91:43–47

    Google Scholar 

  • Hauser R (1972) Morphogenetic action of the subcommissural organ on tail regeneration in Xenopus larvae. Wilhelm Roux Arch Entwickl Mech Org 169:170–184

    Google Scholar 

  • Iwashita Y, Kawaguchi S, Murata M (1994) Restoration of function by replacement of spinal cord segments in the rat. Nature 367:167–170

    Google Scholar 

  • Kapuscinski J, Skoczylas B (1977) Simple and rapid fluorimetric method for DNA microassay. Anal Biochem 71:252–257

    Google Scholar 

  • Karoumi A, Meiniel R, Croisille Y, Belin MF, Meiniel A (1990a) Glycoprotein synthesis in the subcommissural organ of the chick embryo. I. An ontogenetical study using specific antibodies. J Neural Transm Gen Sect 79:141–153

    Google Scholar 

  • Karoumi A, Croisille Y, Croisille F, Meiniel R, Belin MF, Meiniel A (1990b) Glycoprotein synthesis in the subcommissural organ of the chick embryo. II. An immunochemical study. J Neural Transm Gen Sect 80:203–212

    Google Scholar 

  • Karoumi A, Meiniel R, Belin MF, Meiniel A (1991) A comparative immunocytochemical and immunochemical analysis of glycoproteins synthesized in the bovine subcommissural organ. J Neural Transm Gen Sect 86:205–216

    Google Scholar 

  • Kennedy TE, Serafini T, Torre JR de la, Tessier-Lavigne M (1994) Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78:425–435

    Google Scholar 

  • Leonhardt H (1980) Ependym und circumventriculäre Organe. In: Oksche A, Vollrath L (eds) Neuroglia 1. Springer, Berlin Heidelberg New York, pp 177–665

    Google Scholar 

  • Letourneau PC, Condic ML, Snow DM (1994) Interactions of developing neurons with extracellular matrix. J Neurosci 14:915–928

    Google Scholar 

  • Levi-Montalcini R (1987) The nerve growth factor: thirty-five years later. EMBO J 6:1145–1154

    Google Scholar 

  • Louis JC, Magal E, Takayama S, Varon S (1993) CNTF protection of oligodendrocytes against natural and tumor necrosis factorinduced death. Science 259:689–692

    Google Scholar 

  • Martin DL (1992) Synthesis and release of neuroactive substances by glial cells. Glia 5:81–94

    Google Scholar 

  • Meiniel R, Duchier N, Meiniel A (1988) Monoclonal antibody c1B8A8 recognizes a ventricular secretory product elaborated in the bovine subcommissural organ. Cell Tissue Res 254:611–615

    Google Scholar 

  • Meiniel R, Molat JL, Duchier-Liris N, Meiniel A (1990) Ontogenesis of the secretory epithelium of the bovine subcommissural organ. A histofluorescence study using lectins and monoclonal antibodies. Dev Brain Res 55:171–180

    Google Scholar 

  • Meiniel R, Didier R, Molat JL, Meiniel A (1993) Developmental aspects of the subcommissural organ: an approach using lectins and monoclonal antibodies. In: Oksche A, Rodríguez EM, Fernandez-Llebrez P (eds) The subcommissural organ. Springer, Berlin Heidelberg New York, pp 51–59

    Google Scholar 

  • Meiniel R, Creveaux I, Dastugue B, Meiniel A (1995) Specific transcripts analyzed by in situ hybridization in the subcommissural organ of bovine embryos. Cell Tissue Res 279:101–107

    Google Scholar 

  • Oksche A (1969) The subcommissural organ. J Neuro Visc Relat [Suppl] IX:111–139

    Google Scholar 

  • Oksche A, Rodríguez EM, Fernandez-Llebrez P (eds) (1993) The Subcommissural Organ: An Ependymal Brain Gland. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Olsson R (1955) Structure and development of Reissner's fiber in the caudal end of amphioxus and some lower vertebrates. Acta Zool (Stockh) 36:167–198

    Google Scholar 

  • Patterson PH (1993) Les cytokines et le fonctionnement du système nerveux mature. C R Acad Sci III 316:1141–1149

    Google Scholar 

  • Reissner E (1860) Beiträge zur Kenntnis vom Bau des Rückenmarks von Petromyzon fluviatilis L. Arch Anat Physiol 1860:545–588

    Google Scholar 

  • Rodríguez EM, Oksche A, Hein S, Rodríguez S, Yulis R (1984) Comparative immunocytochemical study of the subcommissural organ. Cell Tissue Res 237:427–441

    Google Scholar 

  • Rühle HJ (1971) Anomalien im Wachstum der Achsenorgane nach experimenteller Ausschaltung des Komplexes Subcommissuralorgan-Reissnerscher Faden. Untersuchungen am Rippenmolch (Pleurodeles waltlii Michah 1830). Acta Zool (Stockh) 52:23–68

    Google Scholar 

  • Sarnat HB (1992) Role of human fetal ependyma. Pediatr Neurol 8:163–178

    Google Scholar 

  • Schmalenbach C, Müller HW (1993) Astroglia-neuron interactions that promote long-term neuronal survival. J Chem Neuroanat 6:229–237

    Google Scholar 

  • Schnell L, Schneider R, Kolbeck R, Barde YA, Schwab ME (1994). Neurotrophin-3 enhances sprouting of corticospinal tract during development and after spinal cord lesion. Nature 367:170–173

    Google Scholar 

  • Schoebitz K, Garrido O, Heinrichs MS, Peer L, Rodríguez EM (1986) Ontogenetical development of the chick and duck subcommissural organ. An immunocytochemical study. Histochemistry 81:31–40

    Google Scholar 

  • Serafini T, Kennedy TE, Galko MJ, Mirzayan C, Jessell TM, Tessier-Lavigne M (1994) The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 78:409–424

    Google Scholar 

  • Sterba G, Kleim I, Naumann W, Petter H (1981) Immunocytochemical investigation of the subcommissural organ in the rat. Cell Tissue Res 218:659–662

    Google Scholar 

  • Sterba G, Kiessig C, Naumann W, Petter H (1982) The secretion of the subcommissural organ. A comparative immunocytochemical investigation. Cell Tissue Res 226:427–439

    Google Scholar 

  • Takeuchi IK, Takeuchi YK (1986) Congenital hydrocephalus following X-irradiation of pregnant rats on an early gestational day. Neurobehav Toxicol Teratol 8:143–150

    Google Scholar 

  • Takeuchi IK, Kimura R, Shoji R (1988) Dysplasia of subcommissural organ in congenital hydrocephalus spontaneously occurring in Cws/Idr rats. Experientia 44:338–340

    Google Scholar 

  • Wagner M, Thaller C, Jessell T, Eichele G (1990) Polarizing activity and retinoid synthesis in the floor plate of the neural tube. Nature 345:819–822

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monnerie, H., Boespflug-Tanguy, O., Dastugue, B. et al. Reissner's fibre supports the survival of chick cortical neurons in primary mixed cultures. Cell Tissue Res 282, 81–91 (1995). https://doi.org/10.1007/BF00319135

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00319135

Key words

Navigation