Skip to main content
Log in

Structure and development of the larval central complex in a holometabolous insect, the beetle Tenebrio molitor

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The neuroarchitecture of the central complex, a prominent neuropil in the midbrain of the holometabolan, Tenebrio molitor, is described throughout larval development. The analysis is based on classical silver impregnations and on fate-mapping of identified neurons using antisera against serotonin and FMRF-amide. In T. molitor, the central body is present in the first larval instar, and is formed by side branches of contralaterally projecting neurons. Glial cells surround eight neuropil compartments in the first larval instar. These subdivisions in the organization of the fan-shaped body are maintained throughout development. Intrinsic interneurons are found from the 5th larval instar onwards. In the last larval stage, the central complex consists of the fan-shaped body, the protocerebral bridge, and the anlage of the ellipsoid body. The cellular architecture of the fan-shaped body of the last larval instar resembles the basic structural characteristics of the adult. Serotonin-immunoreactive neurons and FMRF-amide immunoreactive neurons in the midbrain of the first larval instar show the basic structural features of the respective imaginal cells. The structural organizations of larval and adult midbrain are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

Anterior

AGT :

antenno-glomerular tract

aL :

α-lobus

AL :

antennal lobe

AP :

anterior protocerebrum

bL :

β-lobe

BSN :

bilateral symmetrical

FMRF:

amide-immunopositive neurons

CA :

calyx

CL1-CL4 :

serotonin-immunopositive neurons cluster 1–4

d :

dorsal

DAB :

diaminobenzidine tetrahydrochloride

DC :

dorsal commissure

DCFB :

dorsal commissure of the fan-shaped body

DHT :

dorsal horizontal tract

DLTR :

dorsal lateral triangle

DMLP :

dorsal medial lateral protocerebrum

DN :

serotonin-immunopositive deuterocerebral neuron

EB :

ellipsoid body

en1, en2 :

extrinsic neurons connecting two FB-subcompartments

esn :

extrinsic subcompartmental neuron

l :

lateral

FB :

fan-shaped body

FN :

serotonin-immunopositive fan-shaped neuron

fs1, fs2 :

fanshaped neurons of type 1 and 2

GC :

great commissure

HF :

horizontal fibres

in :

intrinsic neuron connecting two FB-subcompartments

isn :

intrinsic subcompartmental neuron

IT :

isthmus tract

LF :

large-field neurons

LFASC :

lateral fascicle

LMFASC :

lateral median fascicle

MB :

median bundles

MLP :

medial lateral protocerebrum

p :

posterior

P :

pedunculus

PB :

protocerebral bridge

pb-fb :

protocerebral bridge-fan-shaped body connection

PBS :

phosphate-buffered saline

PDC :

posterio-dorsal commissure

PTX :

phosphate-buffered saline containing Triton X-100

SU :

suboesophageal ganglion

SVT :

small ventral triangles

TN 1,2 :

tritocerebral serotonin-immunoreactive neuron 1,2

v :

ventral

VB :

ventral body

VBC :

ventral body commissure

VCBC :

ventral central body commissure

VCFB :

ventral commissure of the fan-shaped body

References

  • Bausenwein B, Heisenberg H (1989) Situation-dependent neuronal activity in the central brain of Drosophila. In: Elsner N, Singer W (eds) Dynamics and plasticity in neuronal systems. Thieme, Stuttgart, p 98

    Google Scholar 

  • Bentley D, Toroian-Raymond A (1981) Embryonic and postembryonic morphogenesis of a grasshopper interneuron. J Comp Neurol 201:507–518

    Google Scholar 

  • Breidbach O (1987) Constancy and variation of serotonin-like-immunoreactive neurons in the metamorphosing ventral nerve cord of the meal beetle, Tenebrio molitor L. (Coleoptera: Tenebrionidae). Int J Insect Morphol Embryol 16:17–26

    Google Scholar 

  • Breidbach O (1989) Fate of descending interneurons in the metamorphosing brain of an insect, the beetle Tenebrio molitor L. J Comp Neurol 290:289–309

    Google Scholar 

  • Breidbach O (1990a) Constant topological organization of the coleopteran metamorphosing nervous system: analysis of persistent elements in the nervous system of Tenebrio molitor. J Neurobiol 21:990–1001

    Google Scholar 

  • Breidbach O (1990b) Serotonin-immunoreactive brain interneurons persist during metamorphosis of an insect: a developmental study of the brain of Tenebrio molitor L. (Coleoptera). Cell Tissue Res 259:345–360

    Google Scholar 

  • Breidbach O, Dircksen H (1991) Crustacean cardioactive peptide-immunoreactive neurons in the ventral nerve cord and the brain of the meal beetle Tenebrio molitor during postembryonic development. Cell Tissue Res 265:129–144

    Google Scholar 

  • Breidbach O, Kutsch W (1990) Structural homology of identified motoneurons in the larval and adult stages of hemi- and holometabolous insects. J Comp Neurol 297:392–409

    Google Scholar 

  • Bretschneider F (1913) Der Centralkörper und die pilzförmigen Körper im Gehirn der Insekten. Zool Anz 41:560–569

    Google Scholar 

  • Bretschneider F (1914) Über die Gehirne der Küchenschabe und des Mehlkäfers. Jcnaische Z 52:269–362

    Google Scholar 

  • Campos-Ortega JA, Hartenstein V (1985) Development of the nervous system. In: Kergut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 5. Pergamon Press, New York, pp 49–84

    Google Scholar 

  • Carlson SD, Saint Marie RL (1990) Structure and function of insect glia. Annu Rev Entomol 35:597–621

    Google Scholar 

  • Colonnier M (1964) The tangential organization of the visual cortex. J Anat 98:327–344

    Google Scholar 

  • Fischbach KF, Götz C (1981) Das Experiment: Ein Blick ins Fliegenhirn: Golgi-gefärbte Nervenzellen bei Drosophila. Biu Z 11:183–187

    Google Scholar 

  • Flögel JHL (1877) Über den einheitlichen Bau des Gehirns in den verschiedenen Insekten-Ordnungen. Z Wiss Zool 30:556–592

    Google Scholar 

  • Gieryng R (1964) Veränderungen der histologischen Struktur des Gehirns von Calliphora vomitoria (L.). (Diptera) während der postembryonalen Entwicklung. Z Wiss Zool 171:80–96

    Google Scholar 

  • Goodman CS, Williams JLD (1976) Anatomy of the ocellar interneurons of arcidid grasshoppers. Cell Tissue Res 175:203–207

    Google Scholar 

  • Granger NA, Homberg U, Henderson P, Towle A, Lauder JM (1989) Serotonin-immunoreactive neurons in the brain of Manduca sexta during larval development and larval-pupal metamorphosis. Int J Dev Neurosci 7:55–72

    Google Scholar 

  • Gregory GE (1980) The Bodian protargol technique. In: Strausfeld NJ, Miller TA (eds) Neuroanatomical techniques. Springer, Berlin Heidelberg New York, pp 77–97

    Google Scholar 

  • Gupta AP (1987) Evolutionary trends in the central and mushroom bodies of the arthropod brain: a dilemma. In: Gupta AP (ed) Arthropod brain: its evolution, development, structure, and functions. Wiley, New York, pp 27–42

    Google Scholar 

  • Hanesch U (1987) Der Zentralkomplex von Drosophila melanogaster. Thesis, Würzburg

  • Hanesch U, Fischbach K-F, Heisenberg M (1989) Neuronal architecture of the central complex in Drosophila melanogaster. Cell Tissue Res 257:346–366

    Google Scholar 

  • Hanström B (1925) Comparison between the brains of the newly hatched larva and the imago of Pieris brassicae. Ent Tidsskr 46:43–52

    Google Scholar 

  • Hanström B (1928) Vergleichende Anatomie des Nervensystemes der wirbellosen Tiere. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hertel H, Maraonde U (1987) Processing of visual information in the honeybee brain. In: Menzel R, Mercer A (eds) Neurobiology and behaviour of honeybees. Springer, Berlin Heidelberg New York, pp 141–157

    Google Scholar 

  • Hinke W (1961) Das relative postembryonale Wachstum der Hirnteile von Culex pipiens, Drosophila melanogaster and Drosophila-Mutanten. Z Morph Ökol Tiere 50:81–118

    Google Scholar 

  • Homberg U (1987) Structure and function of the central complex in insects. In: Gupta AP (ed) Arthropod brain: its evolution, development, structure, and functions. Wiley, New York, pp 347–367

    Google Scholar 

  • Homberg U (1990) The central complex in the brain of the locust: anatomical and physiological characterization. In: Elsner N, Roth G (eds) Brain—perception—cogition. Proceedings 18th Göttingen Neurobiology Conference. Thieme, Stuttgart New York, p 318

    Google Scholar 

  • Homberg U (1991) Neuroarchitecture of the central complex in the brain of the locust Schistocerca gregaria and S. americana as revealed by serotonin immunocytochemestry. J Comp Neurol 303:245–254

    Google Scholar 

  • Homberg U, Kingan TG, Hildebrand JG (1987) Immunocytochemistry of GABA in the brain and suboesophageal ganglion of Manduca sexta. Cell Tissue Res 248:1–24

    Google Scholar 

  • Homberg U, Kingan TG, Hildebrand JG (1990) Distribution of FMRFamide-like immunoreactivity in the brain and suboesophageal ganglion of the shinx moth Manduca sexta and colocalization with SCPB, BPP-, and GABA-like immunoreactivity. Cell Tissue Res 259:401–419

    Google Scholar 

  • Jawlowski H (1936) Über den Gehirnbau der Käfer. Z Morth Tiere 32:67–91

    Google Scholar 

  • Jonescu CN (1909) Vergleichende Untersuchungen über das Gehirn der Honigbiene. Z Naturwiss 45:11–180

    Google Scholar 

  • Kutsch W, Schneider H (1987) Histological characterization of neurons innervating functionally different muscles of Locusta. J Comp Neurol 261:515–528

    Google Scholar 

  • Lange AB, Orchard I, Lloyd RJ (1988) Immunohistochemical and electrochemical detection of serotonin in the nervous system of the blood-feeding bug, Rhodnius prolixus. Arch Insect Biochem Physiol 8:187–201

    Google Scholar 

  • Meinertzhagen IA (1973) Development of the compound eye and optic lobe of insects. In: Young D (ed) Development neurobiology of arthropods. Cambridge University Press, Cambridge, pp 51–104

    Google Scholar 

  • Milde J (1988) Visual responses of interneurons in the posterior median protocerebrum and the central complex of the honeybee Apis melifera. J Insect Physiol 34:427–436

    Google Scholar 

  • Milde JJ, Strausfeld NJ (1990) Cluster organisation and response characteristics of the giant fiber pathway of the blowfly Calliphora erythrocephala. J Comp Neurol 294:59–75

    Google Scholar 

  • Mobbs PG (1985) Brain structure. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry, and pharmacology, vol 5. Nervous system: structure and motor function. Pergamon, Oxford, pp 288–370

    Google Scholar 

  • Nässel DR, Cantera R (1985) Mapping of serotonin-immunoreactive neurons in the larval system of the flies Calliphora erythrocephala and Sarcophaga bullata. A comparison with ventral ganglia in adult animal. Cell Tissue Res 239:423–434

    Google Scholar 

  • Nässel DR, Klemm N (1983) Serotonin-like immunoreactivity in the optic lobes of three insect species. Cell Tissue Res 232:129–140

    Google Scholar 

  • Nordlander RH, Edwards JS (1970) Postembryonic brain development in the monarch butterfly, Danaus plexippus plexippus L. III. Morphogenesis of centers other than the optic lobes. Willhelm Roux Arch 164:247–260

    Google Scholar 

  • Panov AA (1959) Bau des Insektengehirns während der postembryonalen Entwicklung. II. Zentralkörper. Entomol Obozr 38:301–311

    Google Scholar 

  • Power ME (1943) The brain of Drosophila melanogaster. J Morphol 72:517–559

    Google Scholar 

  • Power ME (1952) A quantitative study of the growth of the central nervous system of a holometabolous insect, Drosophila melanogaster. J Morphol 91:389–411

    Google Scholar 

  • Radwan WA, Granger NA, Lauder JM (1989) Development and distribution of serotonin in the central nervous system of Manduca sexta during embryogenesis I. The brain and frontal ganglion. Int J Dev Neurosci 7:27–41

    Google Scholar 

  • Satija RC, Sharma ML (1968) Histological studies on the postembryonic development of the brain of Musca domestica. Res Bull Panjab Univ Sci 19:71–80

    Google Scholar 

  • Schäfer S, Bicker G (1986) Distribution of GABA-like immunoreactivity in the brain of the honeybee. J Comp Neurol 246:287–300

    Google Scholar 

  • Schildberger K (1982) Untersuchungen zur Struktur und Funktion von Interneuronen im Pilzkörperbereich des Gehirns der Hausgrille Acheta domesticus. Dissertation, Göttingen

  • Schildberger K (1983) Local interneurons associated with the mushroom bodies and the central body in the brain of Acheta domesticus. Cell Tissue Res 230:573–586

    Google Scholar 

  • Schürmann FW (1974) Bemerkungen zur Funktion der Corpora pedunculata im Gehirn der Insekten aus morphologischer Sicht. Exp Brain Res 19:406–432

    Google Scholar 

  • Schürmann FW, Erber J (1990) FMRFamide-like immunoreactivity in the brain of the honey bee (Apis melifera). A light- and electron microscopical study. Neuroscience 38:797–807

    Google Scholar 

  • Shaw SR (1981) Anatomy and physiology of identified non-spiking cells in the photoreceptor-lamina complex of the compound eyes of insects especially diptera. In: Roberts A, Bush BMH (eds) Neurons without impulses. Cambridge University Press, Cambridge

    Google Scholar 

  • Sternberger A (1979) The unlabeled antibody peroxidase-antiperoxidase (PAP) method. Wiley, New York, pp 104–169

    Google Scholar 

  • Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Strausfeld NJ, Bassemir U, Singh RN, Bacon JP (1984) Organizational principles of outputs from dipteran brains. J Insect Physiol 30:73–93

    Google Scholar 

  • Technau GM (1984) Fiber number in the mushroom bodies of adult Drosophila melanogaster depends on age, sex and experience. J Neurogenet 1:113–126

    Google Scholar 

  • Technau GM, Heisenberg M (1982) Neuronal reorganization during metamorphosis of the corpora pedunculata in Drosophila melanogaster. Nature 295:405–407

    Google Scholar 

  • Truman JW (1990) Metamorphosis of the central nervous system of Drosophila. J Neurobiol 21:1072–1084

    Google Scholar 

  • Truman JW, Bate M (1988) Spatial and temporal patterns of neurogenesis in the central nervous system of Drosophila melanogaster. Dev Biol 125:145–157

    Google Scholar 

  • Valles AM, White K (1988) Serotonin-containing neurons in Drosophila melanogaster: development and distribution. J Comp Neurol 268:414–428

    Google Scholar 

  • Wegerhoff R, Breidbach O (1989) Anatomy of the central body of larval Tenebrio molitor (Insecta, Coleoptera). In: Elsner N, Singer W (eds) Dynamics and plasticity in neuronal systems. Thieme, Stuttgart New York, p 158

    Google Scholar 

  • Wegerhoff R, Breidbach O (1991) Distribution of GABA-like immunoreactivity throughout postembryogenesis of the midbrain in the beetle Tenebrio molitor L. (Insecta, Coleoptera). In: Elsner N, Penzlin H (eds) Synapse — transmission, modulation. Proceedings 19th Göttingen Neurobiology Conference. Thieme, Stuttgart New York, p 511

    Google Scholar 

  • White K, Kankel DR (1978) Patterns of cell division and cell movement in the formation of the imaginal nervous system in Drosophila melanogaster. Dev Biol 65:296–321

    Google Scholar 

  • White K, Hurteau T, Punsal P (1986) Neuropeptide-FMRFamide-like immunoreactivity in Drosophila: development and distribution. J Comp Neurol 247:430–438

    Google Scholar 

  • Williams JLD (1972) Some observations on the neuronal organization of the supra-oesophageal ganglion in Schistocerca gregaria Forskal with particular reference to the central complex. PH D thesis, University of Wales

  • Williams JLD (1975) Anatomical studies of the insect nervous system: a ground-plan of the midbrain and an introduction of the central complex in the locust, Schistocerca gregaria (Orthoptera). J Zool Lond 176:67–86

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wegerhoff, R., Breidbach, O. Structure and development of the larval central complex in a holometabolous insect, the beetle Tenebrio molitor . Cell Tissue Res 268, 341–358 (1992). https://doi.org/10.1007/BF00318803

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00318803

Key words

Navigation