Skip to main content
Log in

Effects of long term infusion of sodium nitroprusside on iron and thiocyanate in rabbits

  • Original Investigations
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The infusion of 0.75 mg/kg/h sodium nitroprusside (SNP) for 40 h in rabbits leads to a significant rise of the plasma thiocyanate concentration, irrespective of whether SNP was infused alone or in combination with sodium thiosulphate (ST). The iron concentration in the plasma is slightly increased, but the iron-binding capacity is not exceeded. The infusion of SNP in rabbits resulted in an elevation of the non-Hb iron in the liver in every case. About 60% of the infused SNP iron is found in the liver, whilst after FeSO4 infusion only about 30% of the administered iron is deposited in the liver. The higher iron content of the liver after SNP-infusion shows that SNP-iron is not taken up in free ionic form in this organ. The question of whether and to what extent the complex is broken down before being taken up remains unanswered.

Slight but insignificant metabolic acidosis developed only when SNP was infused alone but not when given in combination with hydroxocobalamin (HC) or ST in the molar ratio 1∶5 (SNP : antidote). HC and ST are equally effective in preventing the development of acidosis. However, the strong colouration of the plasma after HC-infusion makes photometric determinations more difficult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Casarett LJ (1975) Toxicology of the respiratory system. In: Casarett LJ, Doull J (eds) Toxicology: The basic science of poisons. Macmillan Publ. Co., Inc., New York, p 211

    Google Scholar 

  • Davies DW, Kadar D, Steward DJ, Munro IR (1975) A sudden death associated with the use of sodium nitroprusside for induction of hypotension during anaesthesia. Can Anaesth Soc 22: 547–552

    Google Scholar 

  • Hoebel M, Kreye VAW, Nemes Z, Pill J, Raithelhuber A (1978a) Untersuchungen über die Toxizität von Natriumnitroprussid: Antidote, Bedeutung der Abbauprodukte Eisen und Nitrit. In: Rahn KH, Strufe R (Hrsg) Vasodilatatorische Therapie mit Natriumnitroprussid. Perimed, Erlangen, p 23

    Google Scholar 

  • Hoebel M, Kreye VAW, Pill J (1978b) Effect of sodium nitroprusside alone and in combination with sodium thiosulphate on the acid-base balance, and on thiocyanate and iron plasma levels in the rabbit. Klin Wochenschr (Suppl I) 56: 147–152

    Google Scholar 

  • Hoebel M, Engeser P, Nemeth L, Pill J (1980) The antidote effect of thiosulphate and hydroxocobalamin in formation of nitroprusside intoxication of rabbits. Arch Toxicol 46: 207–213

    Google Scholar 

  • Jack RD (1974) Toxicity of sodium nitroprusside. Br J Anaesth 46: 952

    Google Scholar 

  • Kiese M, Weger N (1969) Formation of ferrihaemoglobin with aminophenols in the human for the treatment of cyanide poisoning. Eur J Pharmacol 7: 97–115

    Google Scholar 

  • Kotz L, Kaiser G, Tschoepel P, Toelg G (1972) Aufschluß biologischer Matrices für die Bestimmung sehr niedriger Spurelementgehalte bei begrenzter Einwaage mit Salpetersäure unter Druck in einem Teflongefäß. Anal Chem 260: 207–209

    Google Scholar 

  • Kruszyna R, Kruszyna H, Smith RP (1982) Comparison of hydroxylamine, 4-dimethylaminophenol and nitrite protection against cyanide poisoning in mice. Arch Toxicol 49: 191–212

    Google Scholar 

  • Merrifield AL, Blundell MD (1974) Toxicity of nitroprusside. Br J Anaesth 46: 324

    Google Scholar 

  • Montoliu J, Botey A, Pons JM, Revert L (1979) Fatal hypotension in normal-dose nitroprusside therapy. Am Heart J 97: 541–542

    Google Scholar 

  • Pill J, Engeser P, Hoebel M, Kreye VAW (1980) Sodium nitroprusside: Comparison of the antidotal effect of hydroxocobalamin and sodium thiosulphate. In: Holmstedt B, Lauwerys R, Mercier M, Roberfroids M (eds) Mechanism of toxicity and hazard evaluation. Elsevier/North-Holland, Biomedical Press, Amsterdam, p 423

    Google Scholar 

  • Ramsey WNM (1958) Plasma iron. In: Sobotka H, Stewart CP (eds) Adv Clin Chem I: 2. Academic Press Inc., New York London

    Google Scholar 

  • Schulz V (1979) Akute und subakute Toxizität von Natriumnitroprussid. Intensivmedizin 16: 320–323

    Google Scholar 

  • Schulz V, Roth B (1982) Detoxification of cyanide in a new-born child. Klin Wochenschr 61: 527–528

    Google Scholar 

  • Smith RP, Kruszyna H (1974) Nitroprusside produces cyanide poisoning via a reaction with hemoglobin. J Pharmacol Exp Ther 191: 557–563

    Google Scholar 

  • Stary Z (1956) Leber und Galle. In: Flaschentrager B, Lehnartz E (Hrsg) Physiologische Chemie, Bd II, 2 a. Springer, Berlin Göttingen Heidelberg, p 1

    Google Scholar 

  • Tinker JH, Michenfelder JD (1976) Sodium nitroprusside: pharmacology, toxicology and therapeutics. Anaesthesiology 45: 340–354

    Google Scholar 

  • Trinder P (1956) The improved determination of iron in serum. J Clin Pathol 9: 170–172

    Google Scholar 

  • Vesey CJ, Cole PV, Simpson PJ (1976) Cyanide and thiocyanate concentrations following sodium nitroprusside infusion in man. Br J Anaesth 48: 651–660

    Google Scholar 

  • Vesey CJ, Simpson PJ, Adams L, Cole PV (1979) Metabolism of sodium nitroprusside and cyanide in the dog. Br J Anaesth 51: 89–97

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Dr. M. Höbel on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engeser, P., Roeßle, R. & Pill, J. Effects of long term infusion of sodium nitroprusside on iron and thiocyanate in rabbits. Arch Toxicol 51, 323–328 (1982). https://doi.org/10.1007/BF00317011

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00317011

Key words

Navigation