Skip to main content
Log in

The acute toxicity of drugs acting at cholinoceptive sites and twenty-four hour rhythms in brain acetylcholine

  • Original Investigations
  • Published:
Archiv für Toxikologie Aims and scope Submit manuscript

Abstract

Acetylcholine (ACh) levels were determined in rat midbrain and caudate nucleus and mouse whole brain in mature animals adapted 3 weeks to a programmed lighting schedule (08:00 to 20:00 h light; 20:00 to 08:00 dark). Peak ACh levels in the rat occurred at 24:00 h; in the mouse the peak at 06:00 h did not differ significantly from values obtained at 24:00 and 12:00 h. Significant trough values occurred at 12:00 h in rat midbrain and at 18:00h in rat caudate nucleus and mouse brain. In mice toxicity of I.V. and I.P. administered ACh is maximal during the dark. Neostigmine, pilocarpine and oxotremorine have toxicity patterns similar to ACh. Carbachol toxicity peaked at 12:00 and 24:00 h. With physostigmine, a tertiary anticholinesterase, peak and trough occurred during the dark. The atropine (I.P.) toxicity rhythm is a mirror image of the cholinomimetic rhythm (except for carbachol). I.V. scopolamine and atropine methyl nitrate patterns resemble atropine's but are less clear-cut. Atropine methyl nitrate pretreatment reduced ACh and physostigmine toxicity but did not alter the overall pattern. Cholinomimetic toxicity and brain ACh patterns are similar, peaking when metabolic activity is maximal. An inverse relationship holds for the anticholinergic drugs. The relationship to central ACh is uncertain.

Zusammenfassung

Nach Adaptation an ein Licht-Dunkelprogramm (8.00 bis 20.00 Licht, 20.00 bis 8.00 Dunkelheit) wurde der Acetylcholingehalt (ACh) im Mittelhirn und N. caudatus von Ratten sowie im Gesamthirn von Mäusen bestimmt. Die höchsten ACh-Konzentrationen wurden bei Ratten um 24.00 gefunden; die höchsten ACh-Werte bei der Maus waren nicht signifikant von den Konzentrationen um 24.00 und 12.00 verschieden. Signifikante ACh-Minima traten im Mittelhirn der Ratte um 12.00, im N. caudatus sowie im Mäusegehirn um 18.00 Uhr auf.

Während der Dunkelperiode wurde die größte Toxicität gegenüber i.v. bzw. i.p. injiziertem ACh bei Mäusen gefunden. Ähnliche zeitliche Unterschiede ergaben sich für Neostigmin, Pilocarpin und Oxytremorin. Die Toxicität von Carbachol zeigte Maxima bei 12.00 und 24.00. Für Physostigmin, einen CholinesteraseHemmstoff mit einem tertiären Stickstoff, lagen sowohl die Toxicitätsmaxima als auch die Toxicitätsminima in der Dunkelperiode.

Die rhythmische Schwankung der Toxicität von i.p. verabfolgtem Atropin verhielt sich umgekehrt wie die der Cholinomimetica (außer Carbachol). Auch nach i.v. Applikation von Scopolamin und N-Methylatropin war ein entsprechender rhythmischer Einfluß auf die Toxicität nachweisbar. Die Vorbehandlung mit N-Methylatropin schwächte die Toxicität zwar ab, der Toxicitätsrhythmus gegenüber ACh und Physostigmin war aber nicht verändert.

Die Toxicität von Cholinomimetica zeigt ein Maximum während der höchsten ACh-Konzentrationen im Gehirn und der höchsten Stoffwechselaktivität. Bei den anticholinergen Substanzen zeigte sich ein umgekehrtes Verhältnis. Die Beziehungen zum zentralen ACh-Gehalt sind unklar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Augustinnson, K. B.: The normal variation of human blood cholinesterase activity. Acta physiol. scand. 35, 40–52 (1955).

    Google Scholar 

  • Axelrod, J., Snyder, S. H., Moore, R. Y., Heller, A.: Abolition of the circadian serotonin rhythm and light controlled changes in hydroxy-indole-0-methyl transferase (HIOMT) in the pineal gland by lesions in the medial forebrain bundle. Science 154, 898–899 (1966).

    Google Scholar 

  • Beani, L., Blanchi, C., Mazzini, P.: Regional changes of acetylcholine and choline acetylase activity in the guinea pig's brain after scopolamine. Experientia (Basel) 20, 667–668 (1964).

    Google Scholar 

  • Berry, J. F., Starz, E.: Acetylcholine and acetone in brain during acetyldehyde intoxication. Quart. J. Stud. Alcohol 17, 190–194 (1956).

    Google Scholar 

  • Bradley, P. B.: The effects of atropine and related drugs on the EEG and behavior. Progr. Brain Res. 28, 3–13 (1968).

    Google Scholar 

  • De Groat, W. C., Volle, R. L.: Ganglionic actions of oxotremorine. Life Sci. 8, 618–623 (1963).

    Google Scholar 

  • Dixon, E. M.: Variation in human cholinesterase activity. Diss. Abstracts 17, 2567 (1957).

    Google Scholar 

  • Dixit, B. N., Buckley, J. P.: Circadian changes in brain 5-hydroxy-tryptamine and plasma corticosterone in the rat. Life Sci. 6, 755–758 (1967).

    Google Scholar 

  • Friedman, A. H., Walker, C. A.: Circadian rhythms in rat midbrain and caudate nucleus biogenic amine levels. J. Physiol. (Lond.) 197, 77–85 (1968).

    Google Scholar 

  • —: Rat brain amines, blood histamine and glucose levels in relationship to circadian changes in sleep induced by pentobarbital sodium. J. Physiol. (Lond.) 202, 133–146 (1969).

    Google Scholar 

  • George, R., Haslett, W. L., Jenden, D. J.: The production of tremor by cholinergic drugs; central sites of action. Int. J. Neuropharmacol. 5, 27–34 (1966).

    Google Scholar 

  • Giarman, N. J., Pepeu, G.: Drug-induced changes in brain acetylcholine. Brit. J. Pharmacol. 19, 226–234 (1962).

    Google Scholar 

  • —: The influence of centrally-acting cholinolytic drugs on brain acetylcholine levels. Brit. J. Pharmacol. 23, 123–130 (1964).

    Google Scholar 

  • Holmstedt, B., Lundgren, G.: Tremorgenic agents and brain acetylcholine. From Mechanisms of Release of Biogenic Amines, Stockholm, 1965; Inc. N.Y.: Pergamon Press 1966.

    Google Scholar 

  • Jones, F., Haus, E., Halberg, F.: Murine circadian susceptibility-resistance cycle to acetylcholine. Proc. Minn. Acad. Sci. 31, 61–62 (1963).

    Google Scholar 

  • Krieger, D. T., Krieger, H. P.: Circadian pattern of plasma 17-hydroxycorticosteroid: Alteration by anticholinergic agents. Science 155, 1421–1422 (1967).

    Google Scholar 

  • Lin, C. H.: Pers. Communication.

  • Litchfield, J. T., Jr., Wilcoxon, F.: A simplified method of evaluating dose-effect experiments. J. Pharmacol. exp. Ther. 96, 99–113 (1949).

    Google Scholar 

  • Manshardt, J., Wurtman, R. J.: Daily rhythm in the noradrenaline content of rat hypothalamus. Nature (Lond.) 217, 574–575 (1968).

    Google Scholar 

  • Mayersbach, H. von: Circadian liver detoxication and acetylcholinesterase rhythmicity, two limiting factors in circadian E 600 toxicity. Symposium on quantitative chronobiology, The International Society for the Study of Biological Rhythms, Little Rock, Arkansas, November 8–10, 1971 (in press).

  • McKinstry, D. N., Koelle, G. B.: (1) Acetylcholine release from the cat superior cervical ganglion by carbachol. J. Pharmacol. exp. Ther. 157, 319–327 (1967).

    Google Scholar 

  • —: (2) Effects of drugs on acetylcholine release from cat superior cervical ganglion by carbachol and by preganglionic stimulation. J. Pharmacol. exp. Ther. 157, 328–336 (1967).

    Google Scholar 

  • Mitchell, J. F.: The spontaneous and evoked release of acetylcholine from the cerebral cortex. J. Physiol. (Lond.) 165, 98–116 (1963).

    Google Scholar 

  • Nair, P., Casper, R.: The influence of light on daily rhythm in hepatic drug metabolizing enzymes in rat. Life Sci. 8, 1291–1298 (1969).

    Google Scholar 

  • Radzialowski, F. M., Bousquet, W. F.: Daily rhythmic variation in hepatic drug metabolism in rat and mouse. J. Pharmacol. exp. Ther. 163, 229–238 (1968).

    Google Scholar 

  • Rapoport, M. I., Feigin, R. D., Bruton, J., Biesel, W. R.: Circadian rhythm for tryptophan pyrrolase activity and its circulating substrate. Science 153, 1642–1644 (1966).

    Google Scholar 

  • Scheving, L. E., Harrison, W. H., Gordon, P., Pauly, J. E.: Daily fluctuation (circadian and ultradian) in biogenio amines of the rat brain. Amer. J. Physiol. 214, 166–173 (1968).

    Google Scholar 

  • Schuberth, J., Sundwall, A.: Effects of some drugs on the uptake of acetylcholine in cortex slices of mouse brain. J. Neurochem. 14, 807–812 (1967).

    Google Scholar 

  • Snedecor, G. W.: Statistical Methods, 4th Ed. Philadelphia: W. B. Saunders 1956.

    Google Scholar 

  • Spoor, R. P., Jackson, D. B.: Circadian rhythms: Variations in sensitivity of isolated atria to acetylcholine. Science 154, 782 (1966).

    Google Scholar 

  • Stoll, H. C.: Pharmacodynamic consideration of atropine and related compounds. Amer. J. med. Sci. 215, 577–592 (1948).

    Google Scholar 

  • Straughan, D. W.: Assay of acetylcholine on the rat blood pressure. J. Pharm. Pharmacol. 10, 783–784 (1958).

    Google Scholar 

  • Toru, M., Aprison, M. H.: Brain acetylcholine studies: A new procedure. J. Neurochem. 13, 1533–1544 (1966).

    Google Scholar 

  • Van Pilsum, J. F., Halberg, F.: Transamidase activity in mouse kidney-an aspect of circadian periodic enzyme activity. Ann. N.Y. Acad. Sci. 117, 337–353 (1964).

    Google Scholar 

  • Venkatachari, S. A. T., Dass, P. M.: Choline esterase activity rhythm ventral cord of scorpion. Life Sci. 7, Pt. 2, 617–621 (1968).

    Google Scholar 

  • Wurtman, R. J., Axelrod, J.: Daily rhythmic changes in tryosine transaminase activity of the rat liver. Proc. nat. Acad. Sci. (Wash.) 57, 1594–1598 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Rat brain acetylcholine data and some of the toxicity curves contained in this paper were presented by the authors in a talk at the Symposium on Circadian Rhythms in Pharmacology and Biochemistry organized by Dr. Julius Axelrod at the Spring Meeting of the Federation of American Societies for Experimental Biology, Atlantic City, New Jersey, 1969, under the title: Circadian Rhythms in Central Acetylcholine and the Toxicity of Cholinergic Drugs.

Confirmation of our findings of rat brain ACh rhythms have subsequently been made by Hanin, Massarelli, and Costa, Science 170, 341 (1970) and by E. Domino et al., (submitted for publication). Saito, Life Sciences 10, (1) 735 (1971) recently reported circadian rhythms for free and bound ACh in rat brain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedman, A.H., Walker, C.A. The acute toxicity of drugs acting at cholinoceptive sites and twenty-four hour rhythms in brain acetylcholine. Arch Toxicol 29, 39–49 (1972). https://doi.org/10.1007/BF00316513

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00316513

Key words

Schlüsselwörter

Navigation