Skip to main content
Log in

Appearance and distribution “in situ” of nicotinic acetylcholine receptors in cervical myotomes of young chick embryos

Radioautographic studies by light and electron microscopy

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

Localization of the acetylcholine (nicotinic) receptor sites was investigated in the developing cervical myotomes of the early chick embryo by radioautography at the light and electron microscope level, using 125I-α-bungarotoxin. The presence of cholinergic receptor sites was detected in situ as early as 60 hours of incubation (stage 17); their relative density increased in the myotome during the differentiation of the somite. Specific labeling of these receptor sites was detected in the myotomal tissue but not in the notochord, spinal cord or periaxial mesenchyme. The distribution of the receptor sites was uniform in the myotome at 3 days in ovo. An anterior-posterior asymmetry of the density appeared at 4 days in ovo and developed up to the 6th day. The highest density of these toxin-binding receptor sites was observed near the spinal motor nerve bundle as revealed by silver staining. These observations, made in situ, are discussed with respect to the possible neurotrophic or physical effects of the early motor innervation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alconero BB (1965) The nature of the earliest spontaneous activity of the chick embryo. J Embryol Exp Morphol 13:255–266

    Google Scholar 

  • Anderson MJ, Cohen MW, Zorychta E (1977) Effects of innervation on the distribution of acetylcholine receptors on cultured muscle cells. J Physiol London 268:731–756

    Google Scholar 

  • Bauer HC, Daniels MP, Fitzgerald S, Pudimat P, Prives J, Christian CN (1979) The partial purification of a neuronal factor which aggregates muscle acetylcholine receptors. Soc Neurosci Abstr 5:475

    Google Scholar 

  • Betz H, Bourgeois JP, Changeux JP (1980) Evolution of cholinergic proteins in developing slow and fast skeletal muscles in chick embryo. J Physiol (Lond) 302:197–218

    Google Scholar 

  • Borgens RB, Wanable JW, Jaffe LF (1979) Bioelectricity and Regeneration. Bioscience 29:468–474

    Google Scholar 

  • Bourgeois JP, Ryter A, Menez A, Fromageot P, Boquet P, Changeux JP (1972) Localization of the cholinergic receptor protein in electrophorus electricus by high resolution autoradiography. Febs Lett 25:127–133

    Google Scholar 

  • Bourgeois JP, Popot JL, Ryter A, Changeux JP (1973) Consequences of denervation on the distribution of the cholinergic (nicotinic) receptor sites from electrophorus electricus revealed by high resolution autoradiography. Brain Res 62:557–563

    Google Scholar 

  • Bourgeois JP, Betz H, Changeux JP (1978a) Effects de la paralysie chronique de l'embryon de Poulet par le flaxédil sur le développement de la jonction neuro-musculaire. CR Acad Sci Paris Série D 286:773–776

    Google Scholar 

  • Bourgeois JP, Popot JL, Ryter A, Changeux JP (1978b) Quantitative studies on the localization of the cholinergic receptor protein in the normal and denervated electroplaque from electrophorus electricus. J Cell Biol 79:200–216

    Google Scholar 

  • Burden S (1977) Development of the neuro-muscular junction in the chick embryo: the number, distribution and stability of Acetylcholine receptors. Dev Biol 57:317–329

    Google Scholar 

  • Caplan AI, Koutroupas S (1973) The control of muscle and cartilage development in the chick limb: the role of differential vascularization. J Embryol Exp Morphol 29:571–583

    Google Scholar 

  • Caplan AI, Rosenberg MJ (1975) Interrelationship between poly (ADP-Rib) synthesis, intracellular NAD levels and muscle or cartilage differentiation from mesodermal cells of embryonic chick limb. Proc Natl Acad Sci USA 72:I852-I857

    Google Scholar 

  • Changeux JP (1975) The cholinergic receptor protein from fish electric organ. In: L.L. Iversen SD, Iversen and SH Snyder (Editors) Handbook of psychopharmacology, vol 6, Biogenic Amine Receptors, Plenum Press, New York 235–302

    Google Scholar 

  • Changeux JP (1981) The acetylcholine receptor: an “allosteric” membrane protein. The Harvey Lectures series, Academic Press, New York 75:85–254

    Google Scholar 

  • Changeux JP, Kasai M, Lee CY (1970) Use of a snake venom toxin to characterize the cholinergic receptor protein. Proc Natl Acad Sci USA 67:1241–1247

    Google Scholar 

  • Chevallier A, Kieny M, Mauger A (1977) Limb-somite relationship: origin of the limb musculature. J Embryol Exp Morphol 41:245–258

    Google Scholar 

  • Chiappinelli VA, Giacobini E (1978) Time course of appearance of α-Bungarotoxin binding sites during development of chick ciliary ganglion and iris. Neurochemical Res 3:465–478

    Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1977) Experimental analysis of the origin of the wing musculature in avian embryos. Anat Embryol 150:171–186

    Google Scholar 

  • Christ B, Jacob HJ, Jacob M (1978) On the formation of the myotomes in avian embryos. An experimental and scanning electron microscope study. Experientia 34:514–516

    Google Scholar 

  • Christian CN, Daniels MP, Sugiyama H, Vogel Z, Jacques L, Nelson PG (1978) A factor from neurons increases the number of acetylcholine receptor aggregates on cultured muscle cells. Proc Nat Acad Sci USA 75:4011–4015

    Google Scholar 

  • Cohen SA, Fischbach GD (1977) Clusters of acetylcholine receptors located at identified nervemuscle synapses in vitro. Dev Biol 59:24–38

    Google Scholar 

  • Devreotes PN, Fambrough DM (1975) Acetylcholine receptor turnover in membranes of developing muscle fibers. J Cell Biol 65:335–358

    Google Scholar 

  • Devreotes PN, Fambrough DM (1976) Turnover of acetylcholine receptors in skeletal muscle. Cold Spring Harbor Symposia on Quantitative Biology. The Synapse 237–251

  • Devreotes PN, Gardner JM, Fambrough DM (1977) Kinetics of biosynthesis of acetylcholine receptor and subsequent incorporation into plasma membrane of cultured chick skeletal muscle. Cell 10:365–373

    Google Scholar 

  • Edwards C (1979) The effects of innervation on the properties of acetylcholine receptors in muscle. Neuroscience 4:564–584

    Google Scholar 

  • Ellison M, Ambrose EJ, Easty SC (1969) Myogenesis in chick embryo somites in vitro. J Embryol Exp Morphol 21:342–346

    Google Scholar 

  • Fambrough DM (1976) Specificity of nerve-muscle interactions. In: S. H. Barondes Ed. Neuronal recognition. Chapman and Hall, London 25–67

    Google Scholar 

  • Fambrough DM, Devreotes PN (1978) Newly synthesized acetylcholine receptors are located in the Golgi apparatus. J Cell Biol 76:237–244

    Google Scholar 

  • Fambrough DM, Rash JE (1971) Development of acetylcholine sensitivity during myogenesis. Dev Biol 26:55–68

    Google Scholar 

  • Fertuck HC, Salpeter MM (1974) Localization of acetylcholine receptor by I125 labeled α-bungarotoxin binding at mouse motor endplates. Proc Natl Acad Sci (Wash) 71:1376–1378

    Google Scholar 

  • Filogamo G (1976) Neurogenic control versus autonomous determination of muscle cell development. In: Synaptogenesis. Gif Lectures in Neurobiology, Naturalia Biologica. L. Tauc Edit. Jouy en Josas France

    Google Scholar 

  • Filogamo G, Gabella G (1967) The development of neuromuscular correlations in Vertebrates. Arch Biol (Liège) 78:9–60

    Google Scholar 

  • Fumagalli L, De Renzis G, Miani N (1976) Acetylcholine receptors: number and distribution in intact and deafferented superior cervical ganglion of the rat. J Neurochem 27:47–52

    Google Scholar 

  • Gabe M (1968) Techniques histologiques. Masson et Cie Ed. Paris

    Google Scholar 

  • Giacobini G, Filogamo G, Weber M, Boquet P, Changeux JP (1973) Effects of a snake-α-neurotoxin on the development of innervated skeletal muscles in chick embryo. Proc Natl Acad Sci USA 70:1708–1712

    Google Scholar 

  • Giacobini-Robecchi MG, Giacobini G, Filogamo G, Changeux JP (1975) Effects of the type A toxin from Clostridium botulinum on the development of skeletal muscles and of their innervation in chick embryo. Brain Res 83:107–121

    Google Scholar 

  • Greene LA (1976) Binding of α-bungarotoxin to chick sympathetic ganglia: properties of the receptor and its rate of appearance during development. Brain Res 111:135–145

    Google Scholar 

  • Gumpel-Pinot M (1974) Contribution du mésoderme somitique à la genèse du membre chez l'embryon d'oiseau. C R Hebd Acad Sci Paris Série D 279:I305-I308

    Google Scholar 

  • Hamburger V (1970) Embryonic motility in Vertebrates. In: F.O. Schmitt ed. The neurosciences. Second Study Program, pp I41-I51, Rockefeller Univ. Press, New York

    Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in development of the chick embryo. J Morphol 88:49–92

    Google Scholar 

  • Hinkle L, McCaig CD, Robinson KR (1981) The direction of growth of differentiating neurones and myoblasts from frog embryos in an applied electric field. J Physiol (Lond) 314:121–135

    Google Scholar 

  • Jaffe LF, Poo MM (1979) Neurites grow faster towards the cathode than the anode in a steady field. J Exp Zool 209:115–128

    Google Scholar 

  • Jessel TM, Siegel RE, Fischbach GD (1979) Induction of acetylcholine receptors on cultured skeletal muscle by a factor extracted from brain and spinal cord. Proc Nat Acad Sci USA 76:5397–5401

    Google Scholar 

  • Kidokoro Y, Yeh E (1981) Synaptic contacts between embryonic Xenopus neurons and myotubes formed from a rat skeletal muscle cell line. Dev Biol 86:12–18

    Google Scholar 

  • Kretsinger RH (1981) In mechanisms of selective signalling by calcium. Neurosciences Res Prog Bull 19:275–277

    Google Scholar 

  • Langman J, Nelson GR (1968) A radioautographic study of the development of the somite in the chick embryo. J Embryol Exp Morphol 19:217–226

    Google Scholar 

  • Larra F, Droz B (1970) Techniques radioautographiques et leur application à l'étude du renouvellement des constituants cellulaires. J Micr Paris 9:845–880

    Google Scholar 

  • Luft JH (1961) Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol 9:409–414

    Google Scholar 

  • Meiniel R (1977) Tératogénie des anomalies axiales induites par un insecticide organophosphoré (le parathion) chez l'embryon d'Oiseau. Wilhelm Roux's Arch 181:41–63

    Google Scholar 

  • Meiniel R (1981) Neuromuscular blocking agents and axial teratogenesis in the avian embryo. Can axial morphogenetic disorders be explained by pharmacological action upon muscle tissue? Teratology 23:259–271

    Google Scholar 

  • Merlie JP, Gros F (1976) In vitro myogenesis. Expression of muscle specific function in the absence of cell fusion. Exp Cell Res 97:406–412

    Google Scholar 

  • Merlie JP, Changeux JP, Gros F (1978) Skeletal muscle acetylcholine receptor. Purification characterization and turnover in muscle cell culture. J Biol Chem 253:2882–2891

    Google Scholar 

  • Mestres P, Hinrichsen K (1976) Zur Histogenese der Somiten beim Hühnchen. J Embryol Exp Morphol 36:669–683

    Google Scholar 

  • Miledi R, Potter LT (1971) Acetylcholine receptors in muscle fibers. Nature (Lond) 233:599–603

    Google Scholar 

  • Orida N, Poo MM (1978) Electrophoretic movement and localisation of acetylcholine receptors in the embryonic muscle cell membrane. Nature (Lond) 275:31–35

    Google Scholar 

  • Paterson B, Prives JM (1973) Appearance of acetylcholine receptor in differentiating cultures of embryonic chick breast muscles. J Cell Biol 59:241–245

    Google Scholar 

  • Patrick J, Heinemann S, Lindstrom J, Schubert D, Steinbach JP (1972) Appearance of acetylcholine receptors during differentiation of a myogenic cell line. Proc Natl Acad Sci USA 69:2762–2766

    Google Scholar 

  • Podleski TR, Axelrod D, Ravdin P, Greenberg I, Johnson MM, Salpeter MM (1978) Nerve extract induces increase and redistribution of acetylcholine receptors on closed muscle cells. Proc Nat Acad Sci USA 75:2035–2039

    Google Scholar 

  • Prives JM, Paterson BM (1974) Differentiation of cell membranes in culture of embryonic chick breast muscle. Proc Natl Acad Sci USA 71:3208–3211

    Google Scholar 

  • Renaud JF, Barhanin J, Cavey D, Fosset M, Lazdunski M (1980) Comparative properties of the in ovo and in vitro differentiation of the muscarinic cholinergic receptor in embryonic heart cell Dev Biol 78:184–200

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high PH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–212

    Google Scholar 

  • Silver J, Billiar RB (1976) An autoradiographic analysis of 3H-α-Bungarotoxin distribution in the rat brain after intraventricular injection. J Cell Biol 71:956–963

    Google Scholar 

  • Smilowitz H, Fischbach GD (1978) Acetylcholine receptors on chick mononucleated muscle precursor cells. Dev Biol 66:539–549

    Google Scholar 

  • Sytkowski AJ, Vogel Z, Nirenberg MW (1973) Development of acetylcholine receptor clusters on cultured muscle cells. Proc Natl Acad Sci USA 70:270–274

    Google Scholar 

  • Taddei C (1972) Ribosome arrangement during oogenesis of Lacerta sicula Raf. Exp Cell Res 70:285–292

    Google Scholar 

  • Toutant M, Bourgeois JP, Toutant JP, Renaud D, Le Douarin G, Changeux JP (1980) Chronic stimulation of the spinal cord in developing chick embryo causes the differentiation of multiple clusters of acetylcholine receptor in the posterior Latissimus dorsi muscle. Dev Biol 76:384–395

    Google Scholar 

  • Vogel Z, Nirenberg M (1976) Localization of acetylcholine receptors during synaptogenesis in retina. Proc Natl Acad Sci (Wash) 73:1806–1810

    Google Scholar 

  • Yazulla S, Schmidt J (1977) Two types of receptors for α-Bungarotoxin in the synaptic layers of the pigeon retina. Brain Res 138:45–57

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meiniel, R., Bourgeois, JP. Appearance and distribution “in situ” of nicotinic acetylcholine receptors in cervical myotomes of young chick embryos. Anat Embryol 164, 349–368 (1982). https://doi.org/10.1007/BF00315757

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00315757

Key words

Navigation