Skip to main content
Log in

Renal effects of atrial natriuretic peptide during dopa-decarboxylase inhibition in patients with essential hypertension

  • Originals
  • Published:
European Journal of Clinical Pharmacology Aims and scope Submit manuscript

Summary

To assess whether intrarenal dopamine synthesis could contribute to the renal response to ANP in essential hypertension, the effects of α-human ANP influsion (50 ng·min−1·kg−1 b.w. for 30 min) on the urinary excretion of dopamine and sodium, urine flow rate and arterial pressure were evaluated in 7 patients with mild-moderate essential hypertension before (control period) and during DOPA-decarboxylase inhibition with carbidopa (carbidopa period).

In the control period, urinary dopamine excretion was 400 pg·min−1 in baseline conditions and 340 pg·min−1 during ANP infusion. Carbidopa significantly decreased urinary dopamine excretion both before (210 pg·min−1) and during ANP (99 pg·min−1). In contrast, carbidopa did not affect sodium excretion (control from 184 to 460 μEq·min−1; carbidopa period from 140 to 390 μEq·min−1) or urine flow rate (control from 5.35 to 11.21 ml·min−1; carbidopa period from 4.29 to 11.54 ml·min−1).

Arterial pressure fell significantly during ANP infusion in both periods, and no significant difference was observed between the two study days, i.e. in the absence of and during carbidopa administration.

We conclude that DOPA-decarboxylase inhibition does not influence the diuretic and natriuretic response to α-human ANP infusion in patients with essential hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. De Bold AJ, Borenstein HB, Veress AT, Sonnenberg H (1981) A rapid and potent natriuretic response to intravenous injection of atrial myocardial extracts in rats. Life Sci 28: 89–94

    Google Scholar 

  2. Cody RJ (1989) Pathophysiology of atrial natriuretic peptide in hypertension. In: Brenner BM, Stein JH (eds) Atrial natriuretic peptides. Livingstone, New York, pp 264

    Google Scholar 

  3. Hollister AS, Inagami T (1991) Atrial natriuretic factor and hypertension. Am J Hypertens 4: 850–865

    Google Scholar 

  4. Iannettone CM, Strazzulla G, Fabbri G, Pazza E, Valenza P, De Feo ML, Franchi F (1991) Effetti della somministrazione acuta di peptide atriale natriuretico su alcuni meccanismi di regolazione della diuresi e della natriuresi nell'iperteso essenziale. Ann Ital Med Int 6: 273–283

    Google Scholar 

  5. Ishii M, Sugimoto T, Matsuoka H, Hirata Y, Ishimitsu T, Fukui K, Sugimoto T, Kangawa K, Matsuo H (1986) The hemodynamic, renal and endocrine effects of α-h atrial natriuretic polypeptide (α-hANP) in normotensive persons and patients with essential hypertension. J Hypertension 4: S542-S545

    Google Scholar 

  6. Richards AM, Nicholls MG, Espiner EA, Ikram H, Yandle TG, Joyce SL, Cullens MM (1985) Effects of α-h atrial natriuretic peptide in essential hypertension. Hypertension 7: 812–817

    Google Scholar 

  7. Goldberg LI (1972) Cardiovascular and renal actions of dopamine: potential clinical applications. Pharmacol Rev 24: 1–29

    Google Scholar 

  8. Levinson PD, Goldstein DS, Munson PJ, Gill JR, Keiser HR (1985) Endocrine, renal and haemodynamic responses to graded dopamine infusions in normal men. J Clin Endocrinol Metab 60: 821–826

    Google Scholar 

  9. Marin-Grez M, Briggs JP, Schnermann J (1985) Dopamine receptor antagonists inhibit the natriuretic response to atrial natriuretic factors (ANF). Life Sci 36: 2171–2176

    Google Scholar 

  10. Petterson A, Hedner J, Hedner T (1986) The diuretic effect of atrial natriuretic peptide (ANP) is dependent on dopamine activation. Acta Physiol Scand 126: 619–621

    Google Scholar 

  11. Webb RL, Della Puca R, Manniello J, Robson RD, Zimmerman MB, Ghai RD (1986) Dopaminergic mediation of the diuretic and natriuretic effects of ANF in the rat. Life Sci 38, 2319–2327

    Google Scholar 

  12. Murphy MB, Bass AS, Goldberg LI (1988) Renal effects of atrial natriuretic factor are independent of dopamine receptors. Am J Physiol 255: F494-F499

    Google Scholar 

  13. Freeston S, MacDonald TM, Jeffrey RF, Brown J, Lee MR (1989) The renal effects of atrial natriuretic peptide in man are not attenuated by (+)-sulpiride. Br J Clin Pharmacol 27: 13–18

    Google Scholar 

  14. World Health Organization (1987) Arterial hypertension: report of a WHO expert committee. WHO Technical Report Series 628. World Health Organization, Geneve

    Google Scholar 

  15. Keith NM, Wagener HP, Barker NW (1939) Some different types of essential hypertension. Their course and prognosis. Am J Med Sci 197: 332–343

    Google Scholar 

  16. Frolich JC, Wilscon TW, Sweetman BJ, Smigel M, Nies AS, Carr K, Watson ST, Oates JA (1975) Urinary prostaglandins: identification and origin. J Clin Invest 55: 763–770

    Google Scholar 

  17. Patrono C, Pugliese F, Ciabattoni G, Patrignani P, Maseri A, Chierchia S, Peskar BA, Cinotti GA, Simonetti BM, Pierucci A (1982) Evidence for a direct stimulatory effect of prostacyclin on renin release in man. J Clin Invest 69: 231–239

    Google Scholar 

  18. Patrono C, Ciabattoni G, Patrignani P, Filabozzi P, Pinca E, Satta MA, Van Dorne D, Cinotti GA, Pugliese F, Pierucci A, Simonetti BM (1983) Evidence for a renal origin of urinary thromboxane B2 in health and disease. In: Samuelsson B, Paoletti R, Ramwell P (eds) Advances in Prostaglandins, Thromboxane and Leukotriene research, vol 11. Raven Press, New York

    Google Scholar 

  19. Neri Serneri GG, Masotti G, Gensini GF, Poggesi L, Abbate R, Mannelli M (1981) Prostacyclin and thromboxane A2 formation in response to adrenergic stimulation in humans: a mechanism for local control of vascular response to sympathetic activation? Cardiovasc Res 15: 287–297

    Google Scholar 

  20. Zipser RD, Morrison A, Laffi G, Duke R (1985) Assay methods for 6-keto-prostaglandin1α in human urine: comparison of chromatography techniques with radioimmunoassay and gas chromatography-negative ion mass spectrometry. J Chromatogr 339: 1–9

    Google Scholar 

  21. La Villa G, Marra F, Laffi G, Belli B, Meacci E, Fascetti P, Gentilini P (1989) Effects of rhein on renal arachidonic acid metabolism and renal function in patients with congestive heart failure: Eur J Clin Pharmacol 37: 1–5

    Google Scholar 

  22. Gentilini P, Laffi G, Meacci E, La Villa G, Cominelli F, Pinzani M, Buzzelli G (1988) Effects of OKY 046, a thromboxane synthase inhibitor, on renal function in non-azotemic cirrhotic patients with ascites. Gastroenterology 94: 1470–1477

    Google Scholar 

  23. Meacci E, La Villa G, Laffi G, Cominelli F, Di Donato M, Dabizzi P, Albani F, Gentilini P (1987) Systemic haemodynamics, renal and platelet function during chronic propranolol administration in patients with compensated cirrhosis. Liver 7: 110–115

    Google Scholar 

  24. Richards AM, Nicholls AM, Ikram H, Webster MW, Yandle TG, Espiner EA (1985) Renal haemodynamic and hormonal effects of human α-atrial natriuretic peptide in healthy volunteers. Lancet I: 545–549

    Google Scholar 

  25. Struthers AD, Anderson JV, Causon RC, Christofides ND, Bloom SR (1985) The effect of human natriuretic peptide on urinary sodium and urinary dopamine excretion in man. J Hypertension 3: S315-S317

    Google Scholar 

  26. Anderson JV, Struthers AD, Christofides ND, Bloom SR (1986) Atrial natriuretic peptide: an endogenous factor enhancing sodium excretion in man. Clin Sci 70: 327–331

    Google Scholar 

  27. Katoh T, Sophasan S, Kurokawa K (1989) Permissive role of dopamine in renal action of ANP in volume-expanded rats. Am J Physiol 257: F300-F309

    Google Scholar 

  28. Murphy MB, Glock D, Lubbers NL, Goldberg LI (1986) Effects of atrial natriuretic factor are independent of dopamine (DAl) receptor activation (abstract). Clin Res 34: 717A

  29. Murphy MB, Bass AS, Goldberg LI (1988) Renal effects of atrial natriuretic factor are independent of dopaminel receptors. Am J Physiol 255: F494-F499

    Google Scholar 

  30. Kastner PR, Ertel MA, Bohnke RA, Emmert LW, Burkhard TA (1987) Dopamine (DAl) receptor blockade does not inhibit the diuretic/natriuretic (D/N) effects of Ile12 5–28 atrial natriuretic peptide in rhesus monkeys (Abstract). Federation Proc 46: 1296

    Google Scholar 

  31. Petterson A, Hedner J, Hedner T (1989) Relationship between renal sympathetic activity and diuretic effects of atrial natriuretic peptide (ANP) in the rat. Acta Physiol Scand 135: 323–233

    Google Scholar 

  32. Lewis HM, Wilkins MR, Kendall MJ, Lee MR (1989) Carbidopa does not affect the renal response to atrial natriuretic factor in man. Clin Sci 77: 281–285

    Google Scholar 

  33. Kageyama S, Brown J, Causon R, O'Flynn M, Aber V (1990) DOPA decarboxylase inhibition does not influence the diuretic and natriuretic response to exogenous α-atrial natriuretic peptide in man. Eur J Clin Pharmacol 38: 223–227

    Google Scholar 

  34. Salazar FJ, Fiksen-Olsen MJ, Opgenorth TJ, Granger JP, Burnett JC Jr, Romero JC (1986) Renal effects of ANP without changes in glomerular filtration rate and blood pressure. Am J Physiol 251: F532-F536

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fronzaroli, C., La Villa, G., Strazzulla, G. et al. Renal effects of atrial natriuretic peptide during dopa-decarboxylase inhibition in patients with essential hypertension. Eur J Clin Pharmacol 44, 423–427 (1993). https://doi.org/10.1007/BF00315537

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00315537

Key words

Navigation