Skip to main content
Log in

Expression and sequence comparison of the Aspergillus niger and Aspergillus tubigensis genes encoding polygalacturonase II

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

The structure and expression of the polygalacturonase-encoding pgaII genes of two recently recognized species, Aspergillus niger and Aspergillus tubigensis, was investigated. While the structure of the pgaII genes is very similar, showing 83% DNA sequence identity and 94% identity at the amino acid level, they have diverged significantly. The NH2-terminal sequence suggests that these PGs are made as pre pro-proteins and the secretory propeptide of the PGII precursors shows sequence homology with some other fungal pro-peptides. The expression of the pgaII genes is strongly regulated by the carbon source and the A. tubigensis gene is expressed and regulated in A. niger transformants. The low similarity of the fungal PGs with those of bacterial and plant origin is discussed in relation to the possible functional role of specific amino acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennetzen JL, Hall BD (1982) J Biol Chem 257:3026–3031

    Google Scholar 

  • Benoit R, Ling N, Esch F (1987) Science 238:1126–1129

    Google Scholar 

  • Berka RM, Ward M, Wilson LJ, Hayenga KJ, Kodama KH, Carlomagno LP, Thompson SA (1990) Gene 86:153–162

    Google Scholar 

  • Boel E, Hansen MT, Hjort I, Hoegh I, Fiil NP (1984) EMBO J 3:1581–1585

    Google Scholar 

  • Boer HA de, Zhang YZ, Adinarayana Reddy, C (1987) Gene 60:93–102

    Google Scholar 

  • Bussink HJD, Kester HCM, Visser J (1990) FEBS Lett 273:127–130

    Google Scholar 

  • Cathala G, Savouret J-F, Mendez B, West BL, Karin M, Martial JA, Baxter JD (1983) DNA 2:329–335

    Google Scholar 

  • Cervone F, De Lorenzo G, Salvi G, Camardella L (1986) In: Baily J (ed) Molecular biology of plant-pathogen interactions, NATO ASI Series, vol H1. Springer, Berlin, Heidelberg, pp 385–392

    Google Scholar 

  • Church GM, Gilbert W (1984) Proc Natl Acad Sci USA 81:1991–1995

    Google Scholar 

  • Collmer A, Keen NT (1986) Annu Rev Phytopathol 24:383–409

    Google Scholar 

  • Cooke RD, Ferber CEM, Kanagasabapathy L (1976) Biochim Biophys Acta 452:440–451

    Google Scholar 

  • Cooper RM (1984) The role of cell wall-degrading enzymes in infection and damage. In: Wood RKS, Jellis GJ (eds) Plant diseases: infection, damage and loss. Blackwell, Oxford, pp 13–27

    Google Scholar 

  • Dean RA, Timberlake WE (1989) The Plant Cell 1:275–284

    Google Scholar 

  • Dente L, Cortese R (1987) Methods Enzymol 155:111–119

    Google Scholar 

  • Devereux J, Haeberli P, Smithies O (1984) Nucleic Acids Res 12:387–395

    Google Scholar 

  • Durrands PK, Cooper RM (1988) Physiol Mol Plant Pathol 32:343–362

    Google Scholar 

  • Frederick KR, Tung J, Emerick RS, Masiarz FR, Chamberlain SH, Vasavada A, Rosenberg S, Chakraborty S, Schopter LM, Massey V (1990) J Biol Chem 265:3793–3802

    Google Scholar 

  • Goosen T, Bloemheuvel G, Gysler C, de Bie DA, van den Broek HWJ, Swart K (1987) Curr Genet 11:499–503

    Google Scholar 

  • Graaff L de, van den Broek H, Visser J (1988) Curr Genet 13:315–321

    Google Scholar 

  • Grierson D, Tucker GA, Keen J, Ray J, Bird CR, Schuch W (1986) Nucleic Acids Res 14:8595–8603

    Google Scholar 

  • Gurr SJ, Unkles SE, Kinghorn JR (1987) In: Kinghorn JR (ed) Gene structure in eukaryotic microbes. IRL Press, Oxford, pp 93–139

    Google Scholar 

  • Gysler C, Harmsen JAM, Kester HCM, Visser J, Heim J (1990) Gene 89:101–108

    Google Scholar 

  • Harmsen JAM, Kusters-van Someren MA, Visser J (1990) Curr Genet 18:161–166

    Google Scholar 

  • Heijne G von (1986) Nucleic Acids Res 14:4683–4690

    Google Scholar 

  • Higgins DG, Sharp PM (1989) CABIOS 5:151–153

    Google Scholar 

  • Hinton JCD, Gill DR, Lalo D, Plastow GS, Salmond GPC (1990) Mol Microbiol 4:1029–1036

    Google Scholar 

  • Huang J, Schell MA (1990) J Bacteriol 172:3879–3887

    Google Scholar 

  • Innes MA, Holland MJ, McGabe PC, Cole GE, Wittman VP, Tal R, Watt KWK, Gelfand DH, Holland JP, Meade JH (1985) Science 228:21–26

    Google Scholar 

  • Kester HCM, Visser J (1990) Biotech Appl Biochem 12:150–160

    Google Scholar 

  • Khanh NQ, Albrecht H, Ruttkowski E, Löffler F, Gottschalk M, Jany KD (1990) Nucleic Acids Res 18:4262

    Google Scholar 

  • Knowles J, Lehtovaara P, Teeri T (1987) Trends Biotechnol 5:255–261

    Google Scholar 

  • Korman DR, Bayliss FT, Barnett CC, Carmona CL, Kodama KH, Royer TJ, Thompson SA, Ward M, Wilson LJ, Berka R (1990) Curr Genet 17:203–212

    Google Scholar 

  • Kusters-van Someren MA, Samson, RA, Visser J (1991) Curr Genet 19:21–26

    Google Scholar 

  • Lewin B (1987) Genes 3rd edn. Wiley, New York

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • May GS, Tsang MLS, Smith H, Fidel S, Morris NR (1987) Gene 55:231–243

    Google Scholar 

  • Misaghi IJ (1982) Physiology and biochemistry of plant-pathogen interactions. Plenum Press, New York, London

    Google Scholar 

  • Nunberg JH, Meade JH, Cole G, Lawyer FC, McCabe P, Schweickart V, Tal R, Wittman VP, Flatgaard JE, Innes MA (1984) Mol Cell Biol 4:2306–2315

    Google Scholar 

  • Oka T, Natori Y, Tanaka S, Tsurugi K, Endo Y (1990) Nucleic Acids Res 18:1897

    Google Scholar 

  • Ramgosek J, Leach J (1987) CRC Crit Rev Biotechnol 6:357–393

    Google Scholar 

  • Rexová-Benková L, Markovic O (1976) Adv Carbohydr Chem Biochem 33:323–385

    Google Scholar 

  • Rexová-Benková L, Mracková M (1978) Biochim Biophys Acta 523:162–169

    Google Scholar 

  • Rexová-Benková L, Slezárik A (1970) Coll Czech Chem Commun 35:1255–1260

    Google Scholar 

  • Ried JL, Collmer A (1985) Appl Environ Microbiol 50:615–622

    Google Scholar 

  • rombouts FM, Pilnik W (1980) Econ Microbiol 5:227–282

    Google Scholar 

  • Ruttkowski E, Labitzke R, Khanh NQ, Löffler F, Gottschalk M, Jany K-D (1990) Biochim Biophys Acta 1087:104–106

    Google Scholar 

  • Saarilahti HT, Heino P, Pakkanen R, Kalkkinen N, Palva I, Palva ET (1990) Mol Microbiol 4:1037–1044

    Google Scholar 

  • Teeri TT, Lehtovaara P, Kauppinen S, Salovuori I, Knowles J (1987) Gene 51:43–52

    Google Scholar 

  • Thomas PS (1983) Methods Enzymol 100:255–266

    Google Scholar 

  • Tien M, Tu CPD (1987) Nature 326:520–523

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Gene 33:103–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by L. A. Grivell

The nucleotide sequence reported in this paper will appear in the EMBL, GenBank and DDBJ Nucleotide Sequence Databases under the accession numbers X58893 (A. niger) and X58894 (A. tubigensis)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bussink, H.J.D., Buxton, F.P. & Visser, J. Expression and sequence comparison of the Aspergillus niger and Aspergillus tubigensis genes encoding polygalacturonase II. Curr Genet 19, 467–474 (1991). https://doi.org/10.1007/BF00312738

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00312738

Key words

Navigation