Skip to main content
Log in

The RAD50 gene, a member of the double strand break repair epistasis group, is not required for spontaneous mitotic recombination in yeast

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Mutations in the RAD50 gene of Saccharomyces cerevisiae have been shown to reduce double strand break repair, meiotic recombination, and radiation-inducible mitotic recombination. Several different point mutations (including ochre and amber alleles) have been previously examined for effects on spontaneous mitotic recombination and did not reduce the frequency of recombination. Instead, the rad50 mutations conferred a moderate hyper-rec phenotype. This paper examines a deletion/interruption allele of RAD50 that removes 998 of 1312 amino acids and adds 1.1 kb of foreign DNA. The results clearly indicate that spontaneous mitotic recombination can occur in the absence of RAD50; in fact, the frequency of recombination is elevated over the wild-type cell. One possible interpretation of these observations is that the initiating lesion in spontaneous recombination events in mitosis might not be a double strand break.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alani E, Subbiah S, Kleckner N (1989) Genetics 122:47–57

    Google Scholar 

  • Chow T, Resnick M (1988) The identification of a deoxyribonuclease controlled by the RAD52 gene of Saccharomyces cerevisiae. In: Friedberg E, Bridges B (eds) Cellular responses to DNA damage. Liss, New York, pp 447–455

    Google Scholar 

  • Esposito MS, Wagstaff JE (1981) The molecular biology of the yeast Saccharomyces. I. Life cycle and inheritance. In: Strathern JN, Jones EW, Broach JR (eds) Mechanisms of mitotic recombination. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York pp 341–370

    Google Scholar 

  • Farnet C, Padmore R, Cao L, Raymond W, Alani E, Kleckner N (1988) UCLA Symp Mol Cell Biol 83:201–215

    Google Scholar 

  • Friedberg EC (1988) Microbiol Rev 52:70–102

    Google Scholar 

  • Game JC (1983) Radiation-sensitive mutants and repair in yeast. In: Spencer JFT, Spencer DM, Smith ARW (eds) Yeast genetics. Fundamental and applied aspects. Springer, Berlin Heidelberg New York, pp 109–137

    Google Scholar 

  • Game JC, Zamb TJ, Braun RJ, Resnick MA, Roth RM (1980) Genetics 94:51–68

    Google Scholar 

  • Hoekstra MF, Malone RE (1985) Mol Cell Biol 5:610–618

    Google Scholar 

  • Holliday R (1964) Genet Res (Cambridge) 5:282–304

    Google Scholar 

  • Malone RE (1983) Mol Gen Genet 189:405–412

    Google Scholar 

  • Malone RE, Esposito RE (1980) Proc Natl Acad Sci USA 77:503–507

    Google Scholar 

  • Malone RE, Esposito RE (1981) Mol Cell Biol 1:891–901

    Google Scholar 

  • Malone RE, Hoekstra MF (1984) Genetics 107:33–48

    Google Scholar 

  • Malone RE, Hyman D (1983) Curr Genet 7:439–447

    Google Scholar 

  • Malone RE, Jordan KB, Wardmam W (1985) Curr Genet 9:453–461

    Google Scholar 

  • Malone RE, Montelone B, Edwards C, Carney K, Hoekstra MF (1988) Curr Genet 14:211–223

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Meselson M, Radding C (1975) Proc Natl Acad Sci USA 72:358–361

    Google Scholar 

  • Montelone BA, Hoekstra MF, Malone RE (1988) Genetics 119:289–301

    Google Scholar 

  • Orr-Weaver TL, Szostak JW, Rothstein RJ (1981) Proc Natl Acad Sci USA 78:6354–6358

    Google Scholar 

  • Prakash S, Prakash L, Burke W, Montelone BA (1980) Genetics 94:31–50

    Google Scholar 

  • Radding C (1982) Annu Rev Genet 16:405–438

    Google Scholar 

  • Resnick M, Nitiss J, Edwards C, Malone R (1986) Genetics 104:603–618

    Google Scholar 

  • Resnick MA (1976) J Theor Biol 59:97–112

    Google Scholar 

  • Resnick MA, Martin P (1976) Mol Gen Genet 143:119–129

    Google Scholar 

  • Roman H (1956) C R Trav Lab Carlsberg 26:299–304

    Google Scholar 

  • Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl F (1983) Cell 33:24–35

    Google Scholar 

  • Thaler DS, Stahl FW (1988) Annu Rev Genet 22:169–197

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malone, R.E., Ward, T., Lin, S. et al. The RAD50 gene, a member of the double strand break repair epistasis group, is not required for spontaneous mitotic recombination in yeast. Curr Genet 18, 111–116 (1990). https://doi.org/10.1007/BF00312598

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00312598

Key words

Navigation