Skip to main content
Log in

On the effectiveness of the approximate inertial manifold—a computational study

  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

We present a computational study evaluating the effectiveness of the nonlinear Galerkin method for dissipative evolution equations. We begin by reviewing the theoretical estimates of the rate of convergence for both the standard spectral Galerkin and the nonlinear Galerkin methods. We show that the rate of convergence in both cases depends mainly on how well the basis functions of the spectral method approximate the elements in the space of solutions. This in turn depends on the degree of smoothness of the basis functions, the smoothness of the solutions, and on the level of compatibility at the boundary between the basis functions of the spectral method and the solutions. When the solutions are very smooth inside the domain and very compatible with the basis functions at the boundary, there may be little advantage in using the nonlinear Galerkin method. On the other hand, for less smooth solutions or when there is less compatibility at the boundary with the basis functions, there is a significant improvement in the rate of convergence when using the nonlinear Galerkin method. We demonstrate the validity of our assertions with numerical simulations of the forced dissipative Burgers equation and of the forced Kuramoto-Sivashinsky equation. These simulations also demonstrate that the analytical upper bounds derived for the rates of convergence of both the standard Galerkin and the nonlinear Galerkin are nearly sharp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Chen, Approximate inertial manifolds for the 2D Navier-Stokes equations, J. Math. Anal. Appl., 165 (1992), 399–418.

    Google Scholar 

  2. M. Chen, R. Temam, Incremental unknowns for solving partial differential equations, Numer. Math., 59 (1991), 255–271.

    Google Scholar 

  3. P. Constantin, C. Foias, Navier-Stokes Equations, University of Chicago Press, Chicago, IL, 1988.

    Google Scholar 

  4. P. Constantin, C. Foias, B. Nicolaenko, R. Temam, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, Applied Mathematical Sciences, Vol. 70, Springer-Verlag, New York, 1989.

    Google Scholar 

  5. P. Constantin, C. Foias, O.P. Manley, R. Temam, Determining modes and fractal dimension of turbulent flows, J. Fluid Mech., 150 (1985), 427–440.

    Google Scholar 

  6. P. Constantin, C. Foias, R. Teman, On the large time Galerkin approximation of the Navier-Stokes equations, SIAM J. Numer. Anal., 21 (1984), 615–634.

    Google Scholar 

  7. C. Devulder, M. Marion, E.S. Titi, On the rate of convergence of the nonlinear Galerkin methods, Math. Comp., 60 (1993), 495–514.

    Google Scholar 

  8. E.J. Doedel, AUTO: a program for the bifurcation analysis of autonomous systems, Congr. Numer., 30 (1981), 279–309.

    Google Scholar 

  9. A. Doelman, E.S. Titi, Regularity of solutions and the convergence of the Galerkin method in the Ginzburg-Landau equation, Numer. Funct. Anal. Optim., 14 (1993), 299–321.

    Google Scholar 

  10. J. Duan, E.S. Titi, P. Holmes, Regularity, approximation and asymptotic dynamics for a generalized Ginzburg-Landau equation, Nonlinearity, 6 (1993), 915–933.

    Google Scholar 

  11. T. Dubois, F. Jauberteau, M. Marion, R. Temam, Subgrid modelling and the interaction of small and large wavelengths in turbulent flows, Comput. Phys. Comm. 65 (1991), 100–106.

    Google Scholar 

  12. E. Fabes, M. Luskin, G. Sell, Construction of inertial manifolds by elliptic regularization, J. Differential Equations, 89 (1991), 355–387.

    Google Scholar 

  13. C. Foias, M.S. Jolly, I.G. Kevrekidis, G.R. Sell, E.S. Titi, On the computation of inertial manifolds, Phys. Lett. A, 131 (1988), 433–436.

    Google Scholar 

  14. C. Foias, O.P. Manley, R. Temam, Modelization of the interaction of small and large eddies in two dimnsional turbulent flows, Math. Model. Numer. Anal. M 2 AN, 22 (1988), 93–114.

    Google Scholar 

  15. C. Foias, G. Prodi, Sur le comportement global des solutions non stationnaires des Equations de Navier-Stokes en Dimension Two, Rend. Sem. Mat. Univ. Padova, 39 (1967), 1–34.

    Google Scholar 

  16. C. Foias, G. Sell, R. Temam, Inertial manifolds for nonlinear evolutionary equations, J. Differential Equations, 73 (1988), 309–353.

    Google Scholar 

  17. C. Foias, G. Sell, E.S. Titi, Exponential tracking and approximation of inertial manifolds for dissipative nonlinear equations, J. Dynam. Diff. Eq., 1 (2) (1989), 199–243.

    Google Scholar 

  18. C. Foias, R. Temam, Some analytic and geometric properties of the solutions of the Navier-Stokes equations, J. Math. Pures Appl., 58 (1979), 339–368.

    Google Scholar 

  19. C. Foias, R. Temam, The algebraic approximation for attractors: the finite dimensional case, Phys. D, 32 (1988), 163–182.

    Google Scholar 

  20. C. Foias, R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., 87 (1989), 359–369.

    Google Scholar 

  21. C. Foias, E.S. Titi, Determining nodes, finite difference schemes and inertial manifolds, Nonlinearity, 4 (1991), 135–153.

    Google Scholar 

  22. M.D. Graham, P.H. Steen, E.S. Titi, Computational efficiency and approximate inertial manifolds for a Bénard convection system, J. Nonlinear Sci., 3 (1993), 153–167.

    Google Scholar 

  23. W.D. Henshaw, H.O. Kreiss, L.G. Reyna, Smallest scale estimates for the Navier-Stokes equations for incompressible fluids, Arch. Rat. Mech. Anal., 112 (1990), 21–44.

    Google Scholar 

  24. J.G. Heywood, The Navier-Stokes equations: on the existence, regularity and decay of solutions, Indiana Univ. Math. J., 29 (1980), 639–681.

    Google Scholar 

  25. J.G. Heywood, An error estimate uniform in time for spectral Galerkin approximations of the Navier-Stokes equations, Pacific J. Math., 98 (1982), 333–345.

    Google Scholar 

  26. J.G. Heywood, R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes equations, Part II, Stability of solutions and error estimates uniform in time, SIAM J. Numer. Anal., 23 (1986), 750–777.

    Google Scholar 

  27. J.G. Heywood, R. Rannacher, On the question of turbulence modeling by approximate inertial manifolds and the nonlinear Galerkin method, SIAM J. Numer. Anal., 30 (1993), 1603–1621.

    Google Scholar 

  28. M.S. Jolly, Bifurcation computations on an approximate inertial manifold for the 2D Navier-Stokes equations, Phys. D, 63 (1993), 8–20.

    Google Scholar 

  29. M.S. Jolly, I.G. Kevrekidis, E.S. Titi, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations, Phys. D, 44 (1990), 38–60.

    Google Scholar 

  30. M.S. Jolly, I.G. Kevrekidis, E.S. Titi, Preserving dissipation in approximate inertial forms for the Kuramoto-Sivashinsky equation, J. Dynam. Diff. Eq., 3 (1991), 179–197.

    Google Scholar 

  31. D.A. Jones, E.S. Titi, A remark on quasi-stationary approximate inertial manifolds for the 2D Navier-Stokes equations, SIAM J. Math. Anal., 25 (1994), 894–914.

    Google Scholar 

  32. D.A. Jones, E.S. Titi, C 1 approximating inertial manifolds for dissipative nonlinear equations, J. Differential Equations (to appear).

  33. H.O. Kreiss, Fourier expansions of the Navier-Stokes equations and their exponential decay rate, in Analyse Mathématique et Applications, Gauthier-Villars, Paris, 1988, pp. 245–262.

    Google Scholar 

  34. M. Kwak, Finite dimensional inertial form for the 2D Navier-Stokes equations, Indiana Univ. Math. J., 41 (1992), 927–982.

    Google Scholar 

  35. M. Kwak, Fourier spanning dimension of attractors for the 2D Navier-Stokes equations, Nonlinear Anal. TMA (to appear).

  36. J. Laminie, F. Pascal, R. Temam, Implementation of finite element nonlinear Galerkin methods using hierarchical bases, J. Comput. Mech. (to appear).

  37. J.L. Lions, Quelques Method de Résolution de Problém aux Limites Non Linéaire, Dunod, Paris, 1969.

    Google Scholar 

  38. X. Liu, Gevrey class regularity and approximate inertial manifolds for the Kuramoto-Sivashinsky equations, Phys. D, 50 (1991), 135–151.

    Google Scholar 

  39. L. Margolin, D.A. Jones, An approximate inertial manifold for computing Burgers' equation, Phys. D, 60 (1992), 175–184.

    Google Scholar 

  40. M. Marion, Approximate inertial manifolds for reaction-diffusion equations in high space dimensions, J. Dynam. Diff. Eq., 1 (1989), 245–267.

    Google Scholar 

  41. M. Marion, R. Temam, Nonlinear Galerkin methods, SIAM J. Numer. Anal., 26 (1990), 1139–1157.

    Google Scholar 

  42. M. Marion, R. Temam, Nonlinear Galerkin methods; the finite elements case, Numer. Math., 57 (1990), 205–226.

    Google Scholar 

  43. M. Marion, J. Xu, Error estimates on a new nonlinear Galerkin method based on two-grid finite elements (preprint).

  44. V.A. Pliss, G.R. Sell, Perturbations of attractors of differential equations, J. Differential Equations, 92 (1991), 100–124.

    Google Scholar 

  45. R. Rautmann, On the convergence rate of nonstationary Navier-Stokes approximations, Proc. IUTAM Symp., Paderborn, Germany, Lecture Notes in Mathematics, Vol. 771, Springer-Verlag, Berlin, 1980.

    Google Scholar 

  46. R.D. Russell, D.M. Sloan, M.R. Trummer, Some numerical aspects of computing inertial manifolds, SIAM J. Sci. Statist. Comput., 14 (1993), 19–43.

    Google Scholar 

  47. R. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS Regional Conference Series, No. 41, SIAM, Philadelphia, PA, 1983.

    Google Scholar 

  48. R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences Vol. 68, Springer-Verlag, New York, 1988.

    Google Scholar 

  49. R. Temam, Attractors for the Navier-Stokes equations: localization and approximation, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36 (1989), 629–647.

    Google Scholar 

  50. R. Temam, Inertial manifolds and multigrid methods, SIAM J. Math. Anal., 21 (1990), 154–178.

    Google Scholar 

  51. E.S. Titi, On a criterion for locating stable stationary solutions to the Navier-Stokes equations, Nonlinear Anal. TMA, 11 (1987), 1085–1102.

    Google Scholar 

  52. E.S. Titi, Une variété approximante de l'attracteur universel des équations de Navier-Stokes, non linéar, de dimension finie, C.R. Acad. Sci. Paris Sér. I, 307 (8) (1988), 383–385.

    Google Scholar 

  53. E.S. Titi, On approximate inertial manifolds to the Navier-Stokes equations, J. Math. Anal. Appl., 149 (1990), 540–557.

    Google Scholar 

  54. E.S. Titi, Un critère pour l'approximation des solutions périodiques des équations de Navier-Stokes, C.R. Acad Sci. Paris Sér. I, 312 (1) (1991), 41–43.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by Roger Temam

This work was supported in part by the National Science Foundation, AFOSR Grant No. F49620-92-J-0287, and the Joint University of California-Los Alamos National Laboratory Institute for Cooperative Research (INCOR) Program for Climate Modeling. Partial support has also come from the Department of Energy “Computer Hardware, Advanced Mathematics, Model Physics” (CHAMMP) research program as part of the U.S. Global Change Research Program.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, D.A., Margolin, L.G. & Titi, E.S. On the effectiveness of the approximate inertial manifold—a computational study. Theoret. Comput. Fluid Dynamics 7, 243–260 (1995). https://doi.org/10.1007/BF00312444

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00312444

Keywords

Navigation