Skip to main content
Log in

Validated Numerical Approximation of Stable Manifolds for Parabolic Partial Differential Equations

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

This paper develops validated computational methods for studying infinite dimensional stable manifolds at equilibrium solutions of parabolic PDEs, synthesizing disparate errors resulting from numerical approximation. To construct our approximation, we decompose the stable manifold into three components: a finite dimensional slow component, a fast-but-finite dimensional component, and a strongly contracting infinite dimensional “tail”. We employ the parameterization method in a finite dimensional projection to approximate the slow-stable manifold, as well as the attached finite dimensional invariant vector bundles. This approximation provides a change of coordinates which largely removes the nonlinear terms in the slow stable directions. In this adapted coordinate system we apply the Lyapunov-Perron method, resulting in mathematically rigorous bounds on the approximation errors. As a result, we obtain significantly sharper bounds than would be obtained using only the linear approximation given by the eigendirections. As a concrete example we illustrate the technique for a 1D Swift-Hohenberg equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arioli, G., Koch, H.: Computer-assisted methods for the study of stationary solutions in dissipative systems, applied to the Kuramoto-Sivashinski equation. Arch. Ration. Mech. Anal. 197(3), 1033–1051 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Arioli, G., Koch, H.: Non-symmetric low-index solutions for a symmetric boundary value problem. J. Differ. Equ. 252(1), 448–458 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Arioli, G., Koch, H.: Existence and stability of traveling pulse solutions of the FitzHugh-Nagumo equation. Nonlinear Anal. 113, 51–70 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Bartha, F.A., Tucker, W.: Fixed points of a destabilized kuramoto-sivashinsky equation. Appl. Math. Comput. 266, 339–349 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Bates, P.W., Lu, K., Zeng, C.: Existence and Persistence of Invariant Manifolds for Semiflows in Banach Space, vol. 645. American Mathematical Soc, Providence (1998)

    MATH  Google Scholar 

  6. Breden, M., Lessard, J.P., Mireles James, J.D.: Computation of maximal local (un)stable manifold patches by the parameterization method. Indag. Math. (N.S.) 27(1), 340–367 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Breunung, T., Haller, G.: Explicit backbone curves from spectral submanifolds of forced-damped nonlinear mechanical systems. Proc. A. 474(2213), 20180083 (2018)

    MathSciNet  MATH  Google Scholar 

  8. Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds I: manifolds associated to non-resonant subspaces. Indiana Univ. Math. J. 52(2), 283–328 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds II: regularity with respect to parameters. Indiana Univ. Math. J. 52(2), 329–360 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Cabré, X., Fontich, E., de la Llave, R.: The parameterization method for invariant manifolds III: overview and applications. J. Differ. Equ. 218(2), 444–515 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Capinski, M.J., Zgliczynski, P.: Cone conditions and covering relations for topologically normally hyperbolic invariant manifolds. Discrete Contin. Dyn. Syst. A 30(3), 641–670 (2011)

    MathSciNet  MATH  Google Scholar 

  12. Capinski, M.J., Zgliczynski, P.: Geometric proof for normally hyperbolic invariant manifolds. J. Differ. Equ. 259(11), 6215–6286 (2015)

    MathSciNet  MATH  Google Scholar 

  13. Castelli, R., Lessard, J.P., Mireles James, J.D.: Parameterization of invariant manifolds for periodic orbits (II): a posteriori analysis and computer assisted error bounds. J. Dyn. Differ. Equ. 30(4), 1525–1581 (2018)

    MathSciNet  MATH  Google Scholar 

  14. Cheng, H., de la Llave, R.: Stable manifolds to bounded solutions in possibly ill-posed PDEs. J. Differ. Equ. 268(8), 4830–4899 (2020)

    MathSciNet  MATH  Google Scholar 

  15. Chicone, C.: Ordinary Differential Equations with Applications. Springer, New York (2006)

    MATH  Google Scholar 

  16. Chow, S.N., Lu, K.: Invariant manifolds for flows in Banach spaces. J. Differ. Equ. 74(2), 285–317 (1988)

    MathSciNet  MATH  Google Scholar 

  17. Chung, Y.-M., Jolly, M.: A unified approach to compute foliations, inertial manifolds, and tracking solutions. Math. Comput. 84(294), 1729–1751 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Cyranka, J., Wanner, T.: Computer-assisted proof of heteroclinic connections in the one-dimensional Ohta-Kawasaki Model. SIAM J. Appl. Dyn. Syst. 17(1), 694–731 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Day, S., Hiraoka, Y., Mischaikow, K., Ogawa, T.: Rigorous numerics for global dynamics: a study of the Swift-Hohenberg equation. SIAM J. Appl. Dyn. Syst. 4(1), 1–31 (2005)

    MathSciNet  MATH  Google Scholar 

  20. de la Llave, R., Mireles James, J.D.: Connecting orbits for compact infinite dimensional maps: computer assisted proofs of existence. SIAM J. Appl. Dyn. Syst. 15(2), 1268–1323 (2016)

    MathSciNet  MATH  Google Scholar 

  21. Eckmann, J.-P., Koch, H., Wittwer, P.: A computer-assisted proof of universality for area-preserving maps. Mem. Am. Math. Soc. 47(289), 122 (1984)

    MathSciNet  MATH  Google Scholar 

  22. Eckmann, J.P., Wittwer, P.: A complete proof of the Feigenbaum conjectures. J. Stat. Phys. 46(3–4), 455–475 (1987)

    MathSciNet  MATH  Google Scholar 

  23. Eldering, J.: Normally Hyperbolic Invariant Manifolds; The Noncompact Case. Springer, Atlantis Press, New York (2013)

    MATH  Google Scholar 

  24. Foias, C., Jolly, M.S., Kevrekidis, I.G., Sell, G.R., Titi, E.S.: On the computation of inertial manifolds. Phys. Lett. A 131(7–8), 433–436 (1988)

    MathSciNet  Google Scholar 

  25. Foias, C., Sell, G.R., Temam, R.: Inertial manifolds for nonlinear evolutionary equations. J. Differ. Equ. 73(2), 309–353 (1988)

    MathSciNet  MATH  Google Scholar 

  26. Galias, Z.: Positive topological entropy of Chua’s circuit: a computer assisted proof. Int. J. Bifurc. Chaos Appl. Sci. Engrg. 7(2), 331–349 (1997)

    MathSciNet  MATH  Google Scholar 

  27. Galias, Z., Zgliczynski, P.: Chaos in the Lorenz equations for classical parameter values. In: A Computer Assisted Proof, Proceedings of the Conference “Topological Methods in Differential Equations and Dynamical Systems” (Kraków-Przegorzały, 1996), (36), 209–210 (1998)

  28. Gameiro, M., Lessard, J.P.: Rigorous computation of smooth branches of equilibria for the three dimensional Cahn-Hilliard equation. Numer. Math. 117(4), 753–778 (2011)

    MathSciNet  MATH  Google Scholar 

  29. Gómez-Serrano, J.: Computer-assisted proofs in PDE: a survey. SeMA J. 76(3), 459–484 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Groothedde, C.M., Mireles James, J.D.: Parameterization method for unstable manifolds of delay differential equations. J. Comput. Dyn. 4(1&2), 21–70 (2017)

    MathSciNet  MATH  Google Scholar 

  31. Haller, G., Ponsioen, S.: Nonlinear normal modes and spectral submanifolds: existence, uniqueness and use in model reduction. Nonlinear Dyn. 86(3), 1493–1534 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Haro, A., Canadell, M., Figueras, J.L., Luque, A., Mondelo, J.M.: The parameterization method for invariant manifolds. In: From Rigorous Results to Effective Computations. Applied Mathematical Sciences, vol. 195. Springer, Cham (2016)

  33. Hénot, O., Lessard, J.P., Mireles James, J.D.: Parameterization of unstable manifolds for ddes: formal series solutions and validated error bounds. J. Dyn. Diff. Equat. (2021). https://doi.org/10.1007/s10884-021-10002-8

    Article  MATH  Google Scholar 

  34. Henry, D.: Geometric Theory of Semilinear Parabolic Equations, vol. 840. Springer, New York (1981)

    MATH  Google Scholar 

  35. Hungria, A., Lessard, J.-P., Mireles James, J.: Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach. Math. Comput. 85, 1427–1459 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Jaquette, J., Lessard, J. P., Takayasu, A.: Global dynamics in nonconservative nonlinear Schrödinger equations, arXiv preprint arXiv:2012.09734 (2020)

  37. Johnson, T., Tucker, W.: A note on the convergence of parametrised non-resonant invariant manifolds. Qual. Theory Dyn. Syst. 10(1), 107–121 (2011)

    MathSciNet  MATH  Google Scholar 

  38. Jolly, M.S.: Explicit construction of an inertial manifold for a reaction diffusion equation. J. Differ. Equ. 78(2), 220–261 (1989)

    MathSciNet  MATH  Google Scholar 

  39. Jolly, M.S., Rosa, R., Temam, R.: Accurate computations on inertial manifolds. SIAM J. Sci. Comput. 22(6), 2216–2238 (2001)

    MathSciNet  MATH  Google Scholar 

  40. Kogelbauer, F., Haller, G.: Rigorous model reduction for a damped-forced nonlinear beam model: an infinite-dimensional analysis. J. Nonlinear Sci. 28(3), 1109–1150 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Lakshmikantham, V., Leela, S., Martynyuk, A.A.: Stability Analysis of Nonlinear Systems. CRC Press, Florida (1988)

    MATH  Google Scholar 

  42. Lanford, O.E., III.: Computer-assisted proofs in analysis, vol. 124, 1984, Mathematical physics, VII (Boulder, Colo., 1983), pp. 465–470

  43. Lanford, O.E., III.: A shorter proof of the existence of the Feigenbaum fixed point. Commun. Math. Phys. 96(4), 521–538 (1984)

    MathSciNet  MATH  Google Scholar 

  44. Mireles James, J.D.: Fourier-Taylor approximation of unstable manifolds for compact maps: numerical implementation and computer-assisted error bounds. Found. Comput. Math. 17(6), 1467–1523 (2017)

    MathSciNet  MATH  Google Scholar 

  45. Mireles James, J. D.: Validated numerics for equilibria of analytic vector fields: invariant manifolds and connecting orbits, Rigorous numerics in dynamics. In: Proc. Sympos. Appl. Math., vol. 74, Amer. Math. Soc., Providence, RI, 27–80 (2018)

  46. Mischaikow, K., Mrozek, M.: Chaos in the Lorenz equations: a computer-assisted proof. Bull. Am. Math. Soc. (N.S.) 32(1), 66–72 (1995)

    MathSciNet  MATH  Google Scholar 

  47. Mischaikow, K., Mrozek, M.: Chaos in the Lorenz equations: a computer assisted proof. II. Details. Math. Comput. 67(223), 1023–1046 (1998)

    MathSciNet  MATH  Google Scholar 

  48. Mischaikow, K., Mrozek, M., Szymczak, A.: Chaos in the Lorenz equations: a computer assisted proof. III. Classical parameter values, vol. 169, 2001, Special issue in celebration of Jack K. Hale’s 70th birthday, Part 3 (Atlanta, GA/Lisbon, 1998), pp. 17–56

  49. Nakao, M.T.: A numerical approach to the proof of existence of solutions for elliptic problems. Jpn. J. Appl. Math. 5(2), 313–332 (1988)

    MathSciNet  MATH  Google Scholar 

  50. Nakao, M.T., Plum, M., Watanabe, Y.: Numerical verification methods and computer-assisted proofs for partial differential equations. In: Springer Series in Computational Mathematics, vol. 53, p. 2019. Springer, Singapore (2018)

    Google Scholar 

  51. Plum, M.: Computer-assisted existence proofs for two-point boundary value problems. Computing 46(1), 19–34 (1991)

    MathSciNet  MATH  Google Scholar 

  52. Plum, M.: Verified existence and inclusion results for two-point boundary value problems, Contributions to computer arithmetic and self-validating numerical methods, (Basel, 1989). IMACS Ann. Comput. Appl. Math. 7, 341–355 (1990)

    MathSciNet  Google Scholar 

  53. Reinhardt, C., James, J.M.: Fourier-Taylor parameterization of unstable manifolds for parabolic partial differential equations: formalism, implementation and rigorous validation. Indag. Math. 30(1), 39–80 (2019)

    MathSciNet  MATH  Google Scholar 

  54. Sell, G.R., You, Y.: Dynamics of Evolutionary Equations, vol. 153. Springer Science & Business Media, New York (2002)

    MATH  Google Scholar 

  55. Szalai, R., Ehrhardt, D., Haller, G.: Nonlinear model identification and spectral submanifolds for multi-degree-of-freedom mechanical vibrations. Proc. A. 473(2202), 20160759 (2017)

    MathSciNet  MATH  Google Scholar 

  56. Takayasu, A., Lessard, J.P., Jaquette, J., & Okamoto, H.: Rigorous numerics for nonlinear heat equations in the complex plane of time, arXiv preprint arXiv:1910.12472 (2019)

  57. Temam, R.: Inertial manifolds and multigrid methods. SIAM J. Math. Anal. 21(1), 154–178 (1990)

    MathSciNet  MATH  Google Scholar 

  58. Tucker, W.: The Lorenz attractor exists. C. R. Acad. Sci. Paris Sér. I Math. 328(12), 1197–1202 (1999)

    MathSciNet  MATH  Google Scholar 

  59. Tucker, W.: A rigorous ODE solver and Smale’s 14th problem. Found. Comput. Math. 2(1), 53–117 (2002)

    MathSciNet  MATH  Google Scholar 

  60. van den Berg, J.B., Mireles James, J.D.: Parameterization of slow-stable manifolds and their invariant vector bundles: theory and numerical implementation. Discrete Contin. Dyn. Syst. 36(9), 4637–4664 (2016)

    MathSciNet  MATH  Google Scholar 

  61. van den Berg, J.B., Mireles James, J.D., Reinhardt, C.: Computing (un)stable manifolds with validated error bounds: non-resonant and resonant spectra. J. Nonlinear Sci. 26, 1055–1095 (2016)

    MathSciNet  MATH  Google Scholar 

  62. van den Berg, J.B., Lessard, J.P.: Chaotic braided solutions via rigorous numerics: chaos in the Swift-Hohenberg equation. SIAM J. Appl. Dyn. Syst. 7(3), 988–1031 (2008)

    MathSciNet  MATH  Google Scholar 

  63. van den Berg, J.B., Lessard, J.P.: Rigorous numerics in dynamics. Not. Am. Math. Soc. 62(9), 1057–1061 (2015)

    MathSciNet  MATH  Google Scholar 

  64. van den Berg, J.B., Mireles James, J.D., Reinhardt, C.: Computing (un)stable manifolds with validated error bounds: non-resonant and resonant spectra. J. Nonlinear Sci. 26(4), 1055–1095 (2016)

    MathSciNet  MATH  Google Scholar 

  65. van den Berg, J.B., Williams, J.F.: Rigorously computing symmetric stationary states of the Ohta-Kawasaki problem in three dimensions. SIAM J. Math. Anal. 51(1), 131–158 (2019)

    MathSciNet  MATH  Google Scholar 

  66. van den Berg, J.B.: Introduction to rigorous numerics in dynamics: general functional analytic setup and an example that forces chaos, Rigorous numerics in dynamics. In: Proc. Sympos. Appl. Math., vol. 74, Amer. Math. Soc., Providence, RI, pp. 1–25 (2018)

  67. van den Berg, J.B., Gameiro, M., Lessard, J.-P., van der Vorst, R.C.: Towards computational Morse-Floer homology: forcing results for connecting orbits by computing relative indices of critical points, 2020, In preparation

  68. van den Berg, J.B., Jaquette, J., Mireles James, J.D.: Matlab codes of “Validated numerical approximation of stable manifolds for parabolic partial differential equations”, https://github.com/JCJaquette/Validated-Numerical-Approximation-of-Stable-Manifolds-for-Parabolic-PDEs, (2020)

  69. van den Berg, J.B., Williams, J.F.: Optimal periodic structures with general space group symmetries in the Ohta-Kawasaki problem. Phys. D: Nonlinear Phenom. 415, 132732 (2021)

    MathSciNet  MATH  Google Scholar 

  70. Wilczak, D., Zgliczynski, P.: A geometric method for infinite-dimensional chaos: symbolic dynamics for the Kuramoto-Sivashinsky pde on the line. J. Differ. Equ. 269(10), 8509–8548 (2020)

    MathSciNet  MATH  Google Scholar 

  71. Zgliczynski, P.: Covering relations, cone conditions and the stable manifold theorem. J. Differ. Equ. 246(5), 1774–1819 (2009)

    MathSciNet  MATH  Google Scholar 

  72. Zgliczynski, P., Mischaikow, K.: Rigorous numerics for partial differential equations: the Kuramoto-Sivashinsky equation. Found. Comput. Math. 1(3), 255–288 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank an anonymous referee for the careful reading of the paper and for the many useful comments and corrections. This final version of the manuscript benefited greatly from their effort. We would also like to thank J.P. Lessard and Konstantin Mischaikow for many invaluable conversations as this work progressed. Our discussions of computer assisted proofs for infinite dimensional connecting orbits as early as 2010 and 2011 provides much of the inspiration for the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Mireles James.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

J. B. van den Berg: This work is part of the research program Connecting Orbits in Nonlinear Systems with project number NWO-VICI 639.033.109, which is (partly) financed by the Dutch Research Council (NWO).

J. Jaquette: This material is based upon work supported by the National Science Foundation under Grant No. DMS-1440140 while JJ was in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Fall 2018 semester.

JDMJ was partially supported by National Science Foundation grant DMS - 1813501 during work on this project.

Appendices

General Strategy for Bootstrapping Gronwall’s Inequality

We generalize the bootstrapping argument used in Sect. 3 so that it can be applied in Sects. 4 and 5. To unify the class of functions we wish to bound, and the set of assumptions we make on these functions, we define Condition A.1 below. In a slight abuse of notation, here we define \( {\mathcal {B}}\) to be a tensor, distinct from its previous usage as a ball of functions in Definition 2.8.

Condition A.1

Fix \( \lambda _1, \dots , \lambda _{N_{\lambda }} \in {\mathbb {R}}\), fix \(H \in {\mathbb {R}}^{N_{\lambda }} \otimes {\mathbb {R}}^{N_{\lambda }} \) and define \( \gamma _k := \lambda _k + H_k^k\) for \( 1 \le k \le N_\lambda \). For \( N_\mu \in {\mathbb {N}}\), fix some \( \mu _k \in {\mathbb {R}}\) for \(1 \le k \le N_\mu \). Assume that \( \{ \gamma _j \}_{j=1}^{N_\lambda } \subseteq \{ \mu _k \}_{k=1}^{N_\mu }\), and suppose that both \( \gamma _{k} > \gamma _{k+1}\) and \(\mu _{k} > \mu _{k+1}\). Assume further that \( \mu _1 > \gamma _1\).

For \(M \in {\mathbb {N}}\), and \(N_i \in {\mathbb {N}}\) for \( 1 \le i \le M\) and basis elements \( e_{n_i} \in {\mathbb {R}}^{N_i}\) where \( 1 \le n_i \le N_i\), we fix tensors

$$\begin{aligned} {\mathcal {A}}&\in \big ( \bigotimes _{i=1}^M {\mathbb {R}}^{N_i} \big ) \otimes {\mathbb {R}}^{N_\lambda } \otimes {\mathbb {R}}^{N_\mu } ,&{\mathcal {B}}&\in \big ( \bigotimes _{i=1}^M {\mathbb {R}}^{N_i} \big ) \otimes {\mathbb {R}}^{N_\lambda } \end{aligned}$$

component-wise by

$$\begin{aligned} {\mathcal {A}}_{j,k}&:= A_{j,k}^{n_1 \dots n_M} \cdot e_{n_1} \otimes \dots \otimes e_{n_M} ,&{\mathcal {B}}_j&:= B_j^{n_1 \dots n_M} \cdot e_{n_1} \otimes \dots \otimes e_{n_M} . \end{aligned}$$

For this arrangement of constants, we say that a pair \((u,\omega )\) satisfies Condition A.1 on a time interval [0, T] if the functions \(u=(u_j)_{j=1}^{N_\lambda }\) and the positive tensor \(\omega \in \bigotimes _{i=1}^M {\mathbb {R}}^{N_i} \) satisfy the inequalities

$$\begin{aligned} e^{ - \lambda _j t} u_j(t)&\le {\mathcal {B}}_j \omega + \int _0^t e^{-\lambda _j \tau } \sum _{0 \le k \le N_{\mu }} e^{\mu _k \tau } {\mathcal {A}}_{j,k} \omega \, d \tau + \int _0^t e^{-\lambda _j \tau } H_j^i u_i(\tau ) \, d\tau \qquad \text {for all } t \in [0,T]. \end{aligned}$$
(82)

In all cases where we consider constants satisfying Condition A.1, we take \(N_\lambda = m_s\), and \( \lambda _1 , \dots , \lambda _{N_\lambda }\) as in (6), and \(H_j^i\) as in Definition 2.9. Hence, the definition of \( \gamma _k\) here coincides with that given in Definition 3.3. For the other variables, we take them in the various sections according to the following table.

 

Section 3

Section 4

Section 5

\(u_j\)

\( | x_j(t,\xi ,\alpha ) - x_j(t,\zeta ,\alpha )|\)

\( \Vert \partial _{i} x_j(t,\eta ,\alpha ) - \partial _{i} x_j(t,\zeta ,\alpha )\Vert \)

\( | x_j(t , \xi , \alpha ) - x_j(t, \xi , \beta )|\)

\(\omega \)

\( | \xi _n - \zeta _n|\)

\( | \eta _l - \zeta _l|\)

\(|\xi _{n_1}| \otimes \Vert \alpha - \beta \Vert _{n_2', {\mathcal {E}}}^{n_3}\)

\({\mathcal {A}}_{j,k}\)

0

\(S_j^{nm} G_{m,k_1}^{l} G_{n,k_2}^i\)

\(C_j^{n_2'} G_{n_3, k}^{n_1}\)

\({\mathcal {B}}_j\)

\(\delta _j^n\)

0

0

\(\{ \mu _k \}\)

\(\{ \gamma _k\}_{k=0}^{m_s}\)

\(\{ \gamma _k \}_{k=0}^{m_s} \cup \{ \gamma _{k_1} + \gamma _{k_2} \}_{k_1,k_2=0}^{m_s}\)

\(\{ \gamma _k\}_{k=-1}^{m_s}\)

We note that for \({\mathcal {A}}_{j,k}\) in Sect. 4 we use a double index \((k_1,k_2)\) to index over the elements of \(\{\mu _k \}\). For a system given as in Condition A.1 we are interested in finding a tensor \({\mathcal {G}}\) satisfying Condition A.2 below.

Condition A.2

Given \(\mu \) as in Assumption A.1 and a pair \((u,\omega )\) of functions \(u=(u_j)_{j=1}^{N_\lambda }\) on [0, T] and a positive tensor \(\omega \in \bigotimes _{i=1}^M {\mathbb {R}}^{N_i} \), we say that the tensor \( {\mathcal {G}}\in \big ( \bigotimes _{i=1}^M {\mathbb {R}}^{N_i} \big ) \otimes {\mathbb {R}}^{N_\lambda } \otimes {\mathbb {R}}^{N_\mu } \) with components

$$\begin{aligned} {\mathcal {G}}_{j,k} := G_{j,k}^{n_1 \dots n_M} e_{n_1} \otimes \dots \otimes e_{n_M}, \end{aligned}$$

satisfies Condition A.2 if \(u_j(t) \le \sum _{k=1}^{N_\mu } e^{\mu _k t} {\mathcal {G}}_{j,k} \omega \) for all \(t\in [0,T]\).

From these two conditions, we can bootstrap our bounds on a tensor \({\mathcal {G}}\).

Proposition A.3

Assume the pair \((u,\omega )\) satisfies Condition A.1 on [0, T] and assume \( {\mathcal {G}}\) satisfies Condition A.2. Fix \(1 \le j \le N_\lambda \). If \({\mathcal {A}}_{j,k}=0\) and \( {\mathcal {G}}_{i,k}=0\) whenever \(\mu _k= \gamma _j\), then we have:

$$\begin{aligned} u_j(t)&\le e^{\gamma _j t} {\mathcal {B}}_j \omega + \sum _{\begin{array}{c} 1 \le k \le N_\mu \\ \mu _k \ne \gamma _j \end{array} } \frac{e^{\mu _k t} - e^{\gamma _j t}}{\mu _k - \gamma _j} \Big ({\mathcal {A}}_{j,k} + \sum _{\begin{array}{c} 1 \le i \le N_\lambda \\ i \ne j \end{array}} H_j^i {\mathcal {G}}_{i,k} \Big ) \omega \qquad \text {for all } t\in [0,T]. \end{aligned}$$
(83)

In other words, define a map \( {\mathcal {T}}_{j,k} : \big ( \bigotimes _{i=1}^M {\mathbb {R}}^{N_i} \big ) \otimes {\mathbb {R}}^{N_\lambda } \otimes {\mathbb {R}}^{N_\mu } \rightarrow \bigotimes _{i=1}^M {\mathbb {R}}^{N_i} \) by:

$$\begin{aligned} {\mathcal {T}}_{j,k}({\mathcal {A}}, {\mathcal {B}},{\mathcal {G}}) := {\left\{ \begin{array}{ll} (\mu _k - \gamma _j)^{-1} \Big ( {\mathcal {A}}_{j,k} + \sum \limits _{\begin{array}{c} 1 \le i \le N_{\lambda } \\ i \ne j \end{array}} H_j^i {\mathcal {G}}_{i,k} \Big ) &{} \text{ if } \mu _k \ne \gamma _j \\ {\mathcal {B}}_j - \sum \limits _{\begin{array}{c} 0 \le m \le N_\mu \\ \mu _m \ne \gamma _j \end{array}} (\mu _m - \gamma _j)^{-1} \Big ( {\mathcal {A}}_{j,m}+ \sum \limits _{\begin{array}{c} 1 \le i \le N_{\lambda } \\ i \ne j \end{array}} H_j^i {\mathcal {G}}_{i,m} \Big )&\text{ if } \mu _k=\gamma _j. \end{array}\right. } \end{aligned}$$
(84)

Then \({\mathcal {G}}\) also satisfies Condition A.2 if we replace \( {\mathcal {G}}_{j,k}\) by \({\mathcal {T}}_{j,k} ({\mathcal {A}}, {\mathcal {B}},{\mathcal {G}})\) for all k.

Proof of Proposition A.3

Splitting \( H_j^i u_i = \sum _{i\ne j} H^i_j u_i + H_j^j u_j \), we write (82) as

$$\begin{aligned} e^{ - \lambda _j t} u_j(t)&\le {\mathcal {B}}_j \omega + \int _0^t e^{-\lambda _j \tau } v(\tau ,\omega ) d\tau + \int _0^t e^{-\lambda _j \tau } H_j^j u_j(\tau ) d\tau . \end{aligned}$$

where

$$\begin{aligned} v(\tau ,\omega )&= \sum _{\begin{array}{c} 1 \le k \le N_\mu \\ \mu _k \ne \gamma _j \end{array} }e^{\mu _k \tau } {\mathcal {A}}_{j,k} \omega + \sum _{\begin{array}{c} 1 \le i \le N_\lambda \\ i \ne j \end{array}} H_j^i u_i (\tau ) . \end{aligned}$$

By plugging in the bound assumed in Condition A.2, we obtain

$$\begin{aligned} v(\tau ,\omega )&\le \sum _{\begin{array}{c} 1 \le k \le N_\mu \\ \mu _k \ne \gamma _j \end{array} }e^{\mu _k \tau } \Big ( {\mathcal {A}}_{j,k} \omega + \sum _{\begin{array}{c} 1 \le i \le N_\lambda \\ i \ne j \end{array}} H_j^i {\mathcal {G}}_{i,k} \omega \Big ) . \end{aligned}$$

By applying Lemma 3.9 we obtain (83).

In order to obtain tensors satisfying the requirement that \({\mathcal {A}}_{j,k}, {\mathcal {G}}_{i,k}=0\) whenever \(\mu _k= \gamma _j\), we define an operator \({\mathcal {Q}}_j\) as below.

Proposition A.4

Fix \(1 \le j \le N_{\lambda }\) and define a map \( {\mathcal {Q}}_j : \big ( \bigotimes _{i=1}^M {\mathbb {R}}_+^{N_i} \big ) \otimes {\mathbb {R}}^{N_\lambda } \otimes {\mathbb {R}}^{N_\mu } \rightarrow \big ( \bigotimes _{i=1}^M {\mathbb {R}}_+^{N_i} \big ) \otimes {\mathbb {R}}^{N_\lambda } \otimes {\mathbb {R}}^{N_\mu }\) by

$$\begin{aligned} {\mathcal {Q}}_j ({\mathcal {G}})_{i,k}^{n_{1} \dots n_{M}} := {\left\{ \begin{array}{ll} 0 &{} \text{ if } \mu _k= \gamma _j \\ G_{i,k}^{n_{1} \dots n_{M}} + G_{i,(k+1)}^{n_{1} \dots n_{M}} &{} \text{ if } \mu _{k+1}= \gamma _j, \text{ and } G_{i,(k+1)}^{n_{1} \dots n_{M}} >0 \\ G_{i,k}^{n_{1} \dots n_{M}} + G_{i,(k-1)}^{n_{1} \dots n_{M}} &{} \text{ if } \mu _{k-1}= \gamma _j, \text{ and } G_{i,(k-1)}^{n_{1} \dots n_{M}} <0 \\ G_{i,k}^{n_{1} \dots n_{M}} &{} \text{ otherwise. } \end{array}\right. } \end{aligned}$$

Then \( {\mathcal {Q}}_j ({\mathcal {G}})_{i,k} =0\) whenever \( \mu _k = \gamma _j\). Furthermore, if \({\mathcal {G}}\) satisfies Condition A.2 then \({\mathcal {Q}}_j ({\mathcal {G}})\) satisfies Condition A.2.

We are able to generalize Algorithm 3.11 as follows.

Algorithm A.5

Take as input all the constants in Condition A.1, an input tensor \({\widehat{{\mathcal {G}}}}\) satisfying Condition A.2, and a computational parameter \(N_{bootstrap}\). The algorithm outputs a tensor \({\mathcal {G}}\).

figure b

Proposition A.6

If the input tensor \({\widehat{{\mathcal {G}}}}\) to Algorithm A.5 satisfies Condition A.2, then the output tensor \({\mathcal {G}}\) satisfies Condition A.2.

The proof of Proposition A.4 follows from the assumption that \(\mu _{k} > \mu _{k+1}\). The proof of Proposition A.6 follows from an induction argument which uses Proposition A.3 for the inductive step. Both proofs are left to the reader.

Semigroup Estimates for Fast-Slow Systems

In Eq. (8) we require constants \(C_s, \lambda _s \) satisfying

$$\begin{aligned} \begin{aligned} |e^{(\Lambda _s + L_s^s)t } \mathrm {x}_{s} |&\le C_s e^{\lambda _s t } |\mathrm {x}_{s}|,&\qquad&t \ge 0, \mathrm {x}_{s} \in X_s . \end{aligned} \end{aligned}$$
(85)

Our assumption that \( \lambda _s <0\), and moreover that \( \gamma _0 = \lambda _s + C_s {\hat{{\mathcal {H}}}} < 0 \), is essential. In Proposition 3.13 this is used to prove that solutions \(x(t, \xi ,\alpha ) \) stay inside the ball \(B_s(\rho )\) for all \( t\ge 0\). While our method of bootstrapping Gronwall’s inequality greatly mitigates the effect of these constants \( C_s, \lambda _s\) on our final estimates, for the Lyapunov-Perron operator to be well defined it is essential that we prove \(\gamma _0 <0\).

There are two types of estimates which we will apply to obtain pairs \((C_s,\lambda _s)\) satisfying (85). First, for linear operators \( A,B \in {\mathcal {L}}(X,X) \) with \(| e^{At} \mathrm {x}| \le k e^{\lambda t} |\mathrm {x}|\) for all \(\mathrm {x}\in X\) and \(t \ge 0\), and \( \Vert B\Vert <\infty \), we have (the proof is analogous to the one of Proposition 3.2)

$$\begin{aligned} | e^{(A+B)t} \mathrm {x}|&\le k e^{(\lambda + k \Vert B\Vert ) t} |\mathrm {x}|, \qquad \text {for all } t \ge 0, \mathrm {x}\in X. \end{aligned}$$
(86)

This estimate by itself is not enough, as the largest eigenvalue of \( \Lambda _s\) is often small in comparison with \(\Vert L_s^s \Vert \). For example, in Sect. 6 we showed that \( |e^{\Lambda _i t} \mathrm {x}_i| \le e^{\lambda _i t} | \mathrm {x}_i| \) and \( \Vert L_j^i \Vert \le D_j^i\) with values

$$\begin{aligned} \lambda _1&= -1.41,&\lambda _2&= -4.58 \times 10^{4} ,&D_s^s&= \left( \begin{matrix} 4 \times 10^{-10} &{} 1.6 \\ 1.6 &{} 5.7 \end{matrix} \right) . \end{aligned}$$

Since \( \lambda _1 + \Vert L_s^s\Vert > 0 \), just an estimate of the type in (86) with A the diagonal part of \(D_s^s\) and B the off-diagonal part will not suffice. We further note that our estimates for \( D_s^s\) do not improve with a larger Galerkin projection dimension. Hence we want to change basis to diagonalize \(\Lambda _s + L_s^s\), at least approximately, and then take advantage of the identity \(e^{PJP^{-1}t}=P e^{Jt}P^{-1}\) in our estimates. To motivate our construction, we first consider a \(2 \times 2\) matrix

$$\begin{aligned} M&= \left( \begin{matrix} \lambda _1 &{} \delta _b \\ \delta _c &{} \lambda _\infty \end{matrix} \right) . \end{aligned}$$

If \(\lambda _\infty \) is much larger in absolute value than the other matrix entries, then the eigenvalues of M are approximately given by \( \lambda _1\) and \( \lambda _\infty \). In particular, if \(| \delta _b \delta _c| < | \lambda _1 \lambda _\infty |\) and \( \lambda _1,\lambda _\infty <0\), then all of the eigenvalues of M have negative real part. Below in Theorem B.1 we prove an analogous theorem where we replace \( \lambda _1\) by a finite dimensional matrix, and \( \lambda _\infty \) by an infinite dimensional linear operator. This is the second type of estimate that we use to find pairs \((C_s,\lambda _s)\) satisfying (85).

Theorem B.1

Consider Banach spaces \( {\mathbb {C}}^N\) and \(X_\infty \) with arbitrary norms, and their product \( {\mathbb {C}}^N \times X_\infty \) with norm \( | (x_N,x_\infty )| = (|x_N|^p + |x_\infty |^p)^{1/p}\) for any \( 1 \le p \le \infty \).

Consider the linear operators \(M,\Lambda ,L : {\mathbb {C}}^N \times X_\infty \rightarrow {\mathbb {C}}^N \times X_\infty \) given by

$$\begin{aligned} M&= \Lambda +L ,&\Lambda&= \left( \begin{matrix} \Lambda _1 &{} 0\\ 0 &{} \Lambda _{\infty } \end{matrix} \right) ,&L&= \left( \begin{matrix} L_1^1 &{} L_1^\infty \\ L_\infty ^1 &{} L_{\infty }^\infty \end{matrix} \right) . \end{aligned}$$
(87)

We require \(\Lambda \) to be densely defined and L to be bounded. Suppose that \( \Lambda _1\) is diagonal and that \(\Lambda _\infty \) has a bounded inverse.

Fix constants \(\mu _1,\mu _\infty ,C_1,C_\infty \in {\mathbb {R}}\) such that for all \(t \ge 0\) we have

$$\begin{aligned} \Vert e^{\Lambda _1 t} \Vert&\le C_1 e^{\mu _1 t} ,&\Vert e^{\Lambda _\infty t} \Vert&\le C_\infty e^{\mu _\infty t} . \end{aligned}$$

Fix constants \(\delta _1, \delta _b,\delta _c,\delta _d,\varepsilon >0\) such that

$$\begin{aligned} \Vert L_1^1 \Vert&\le \delta _a,&\Vert L_1^\infty \Vert&\le \delta _b ,&\Vert L_\infty ^1\Vert&\le \delta _c ,&\Vert L_\infty ^\infty \Vert&\le \delta _d , \end{aligned}$$

and set

$$\begin{aligned} \varepsilon&:= \sum _{ \lambda \in \sigma (\Lambda _1) } \frac{ \Vert \Lambda _\infty ^{-1} \Vert }{1 - \Vert \Lambda _\infty ^{-1} \Vert ( \delta _d + | \lambda | )} . \end{aligned}$$

Assume that the inequalities

$$\begin{aligned} \Vert \Lambda _\infty ^{-1} \Vert \left( \delta _d + \sup _{\lambda _k \in \sigma (\Lambda _1)} | \lambda _k| \right)&<1 ,&\mu _\infty + C_\infty \left( \delta _d+ \varepsilon \delta _b \delta _c (1 + \varepsilon ^2 \delta _b \delta _c)\right) < \mu _1 , \end{aligned}$$
(88)

are satisfied. Then we have

$$\begin{aligned} \Vert e^{M t} \Vert \le C_s e^{\lambda _s t}, \end{aligned}$$

where

$$\begin{aligned} C_s&:= (1+\varepsilon \delta _b)^2(1+\varepsilon \delta _c)^2 \max \{C_1,C_\infty \} \\ \lambda _s&:= \mu _1 + C_s \delta _a + \Delta \max \{C_1,C_\infty \}\\ \Delta&:= \varepsilon \delta _b \delta _c \left( 1 + \varepsilon (2 \delta _b + \delta _c) + \varepsilon ^2 \delta _b \delta _c (1 + \varepsilon \delta _b) \right) . \end{aligned}$$

First we prove a lemma for general Banach spaces which allows us to approximately diagonalize our matrix. When \(|\cdot |\) denotes the norm on a Banach space, then by \(|\cdot |_*\) we denote the norm on its dual.

Lemma B.2

For a Banach space \( X_\infty \) consider the linear operator \(M_1: {\mathbb {C}}^N \times X_\infty \rightarrow {\mathbb {C}}^N \times X_\infty \) defined as

$$\begin{aligned} M_1= \left( \begin{matrix} A &{} B \\ C &{}D \end{matrix} \right) . \end{aligned}$$

Suppose that \( \sigma (A) \cap \sigma (D) = \emptyset \) and that A has distinct eigenvalues \(\lambda _1 ,\dots , \lambda _N\) with eigenvectors \( v_1 , \dots , v_N\), and dual eigenvectors \(u_1 , \dots , u_N\) (the corresponding eigenvectors of \(A^*\)). Normalize the vectors so that \(u^*_i v_j =\delta _{ij}\), the Kronecker delta.

We define \( W_b : X_\infty \rightarrow {\mathbb {C}}^N \) and \( W_c : {\mathbb {C}}^N \rightarrow X_\infty \) as a sum of products between vectors in their codomains, and dual vectors acting on their domains:

$$\begin{aligned} W_b&:= \sum _{k=1}^N v_k \left[ (D^* - \lambda ^*_k I_{\infty })^{-1} B^* u^*_k \right] ,&W_c&:= \sum _{k=1}^N - \left[ (D - \lambda _k I_{\infty })^{-1} C v_k \right] u^*_k , \end{aligned}$$

where \( D^* : X_\infty ^* \rightarrow X_\infty ^*\) and \( B^* :({\mathbb {C}}^N)^* \rightarrow X_{\infty }^*\) are the dual transformations. Define invertible operators \(P_b,P_c: {\mathbb {C}}^N \times X_\infty \rightarrow {\mathbb {C}}^N \times X_\infty \) by

$$\begin{aligned} P_b&= \left( \begin{matrix} I_{N} &{} W_b \\ 0 &{} I_{\infty } \end{matrix} \right)&P_c&= \left( \begin{matrix} I_{N} &{} 0 \\ W_c &{} I_{\infty } \end{matrix} \right) . \end{aligned}$$

Then

$$\begin{aligned} (P_cP_b)^{-1} M_1 ( P_cP_b) = \left( \begin{matrix} A &{} 0 \\ 0 &{}D \end{matrix} \right) + E, \end{aligned}$$

where

$$\begin{aligned} E = \left( \begin{matrix} (I_N + W_b W_c) B W_c &{} B W_c W_b + W_bW_cB (I + W_c W_b) \\ -W_c B W_c &{} -W_c B ( I_{\infty } + W_c W_b ) \end{matrix} \right) . \end{aligned}$$

Proof

First we show that

$$\begin{aligned} P_b^{-1} \left( \begin{matrix} A &{} B \\ 0 &{} D \end{matrix} \right) P_b&= \left( \begin{matrix} A &{} 0 \\ 0 &{} D \end{matrix} \right) ,&P_c^{-1} \left( \begin{matrix} A &{} 0 \\ C &{} D \end{matrix} \right) P_c&= \left( \begin{matrix} A &{} 0 \\ 0 &{} D \end{matrix} \right) . \end{aligned}$$
(89)

We begin with the second equality in (89), and calculate

$$\begin{aligned} P_c^{-1} \left( \begin{matrix} A &{} 0 \\ C &{} D \end{matrix} \right) P_c&= \left( \begin{matrix} A &{} 0 \\ -W_cA + C +DW_c &{} D \end{matrix} \right) . \end{aligned}$$

We compute the action of \(-W_cA + C +DW_c\) on an eigenvector \( v_k\) of A as follows:

$$\begin{aligned} ( -W_cA + C +DW_c ) v_k&= C v_k +( D -\lambda _k I_{\infty } )W_c v_k . \end{aligned}$$

To see that the right hand side is equal to zero, we calculate, using \(u^*_i v_j =\delta _{ij}\),

$$\begin{aligned} W_c v_k = - \left( D - \lambda _k I_{\infty } \right) ^{-1} C v_k . \end{aligned}$$

Since the eigenvectors \( v_1 \dots v_N\) span \({\mathbb {C}}^N\), then \(-W_c A + C +DW_c =0\), yielding the desired equality.

The argument is analogous for the first identity in (89). Again we begin by calculating

$$\begin{aligned} P_b^{-1} \left( \begin{matrix} A &{} B \\ 0 &{} D \end{matrix} \right) P_b&= \left( \begin{matrix} A &{} AW_b + B -W_bD \\ 0 &{} D \end{matrix} \right) . \end{aligned}$$

Hence, we would like to show the map \((AW_b + B -W_bD): X_\infty \rightarrow {\mathbb {C}}^N\) is the zero map, which we do by arguing that \(u^*_k (AW_b + B -W_bD) =0\) for all k. The latter follows from a calculation similar to the one performed above.

Finally, we calculate \((P_cP_b)^{-1} M_1 P_cP_b\) as follows:

$$\begin{aligned} (P_cP_b)^{-1} M_1 ( P_cP_b)&= P_b^{-1} \left( \left( \begin{matrix} A &{} 0 \\ 0 &{}D \end{matrix} \right) + P_c^{-1} \left( \begin{matrix} 0 &{} B \\ 0 &{} 0 \end{matrix} \right) P_c \right) P_b \\&= P_b^{-1} \left( \left( \begin{matrix} A &{} B \\ 0 &{}D \end{matrix} \right) + \left( \begin{matrix} B W_c &{} 0 \\ -W_c B W_c &{} -W_c B \end{matrix} \right) \right) P_b \\&= \left( \begin{matrix} A &{} 0 \\ 0 &{}D \end{matrix} \right) + \left( \begin{matrix} (I_N + W_b W_c) B W_c &{} B W_c W_b + W_bW_cB (I + W_c W_b) \\ -W_c B W_c &{} -W_c B ( I_{\infty } + W_c W_b ) \end{matrix} \right) . \end{aligned}$$

\(\square \)

Proof of Theorem B.1

Let \( M = M_1 + M_2 \), where

$$\begin{aligned} M_1&:= \left( \begin{matrix} A&{}B\\ C&{}D \end{matrix} \right) := \left( \begin{matrix} \Lambda _1 &{} L_1^\infty \\ L_\infty ^1 &{} \Lambda _\infty + L_\infty ^\infty \end{matrix} \right) ,&M_2&:= \left( \begin{matrix} L_1^1 &{} 0 \\ 0 &{} 0 \end{matrix} \right) . \end{aligned}$$

We will apply Lemma B.2 to the matrix \(M_1\). Since we have assumed that \(\Lambda _1\) is diagonal we may take \(u_k=v_k=e_k\), the standard basis vectors in \({\mathbb {C}}^{N}\). We begin by proving \( \Vert W_b\Vert \le \varepsilon \delta _b\) and \(\Vert W_c \Vert \le \varepsilon \delta _c\). We first calculate

$$\begin{aligned} (D-\lambda _k I_\infty )^{-1} = ( \Lambda _\infty + L_\infty ^\infty - \lambda _k I_{\infty } )^{-1}&= ( I_{\infty } + \Lambda _\infty ^{-1} ( L_\infty ^\infty -\lambda _k I_{\infty }))^{-1} \Lambda _\infty ^{-1} . \end{aligned}$$

By our hypothesis, we are allowed to apply the Neumann series and we obtain

$$\begin{aligned} \Vert (D-\lambda _k I_\infty )^{-1} \Vert&\le \frac{\Vert \Lambda _\infty ^{-1}\Vert }{1 - \Vert \Lambda _\infty ^{-1}\Vert ( \delta _d + | \lambda _k| )}. \end{aligned}$$
(90)

We note that the same estimate holds for the dual operator \((D^*-\lambda _k^* I_\infty )^{-1}\).

We now show that \(\Vert W_b\Vert \le \varepsilon \delta _b\). Namely, by using that \(\Vert u^*_k\Vert _{({\mathbb {C}}^N)^*}=\Vert v_k\Vert _{{\mathbb {C}}^N}=1\) we find that

$$\begin{aligned} \Vert W_b \Vert&= \sup _{ x \in X_\infty , \Vert x\Vert =1} \Big \Vert \sum _{ \lambda _k \in \sigma (\Lambda _1) } v_k \left[ (D^* - \lambda ^*_k I_{\infty } )^{-1} B^* u^T_k\right] x \Big \Vert _{{\mathbb {C}}^N} \\&\le \sup _{ x \in X_\infty , \Vert x\Vert =1} \sum _{ \lambda _k \in \sigma (\Lambda _1) } \Big | \left[ (D^* - \lambda ^*_k I_{\infty } )^{-1} B^* u^T_k\right] x \Big | \\&\le \sum _{ \lambda _k \in \sigma (\Lambda _1) } \Big \Vert (D^* - \lambda ^*_k I_{\infty } )^{-1} B^* \Big \Vert _{{\mathcal {L}}( ({\mathbb {C}}^{N})^* ,X_\infty ^*) } \\&\le \Vert B^* \Vert \sum _{ \lambda _k \in \sigma (\Lambda _1) } \frac{ \Vert \Lambda _\infty ^{-1} \Vert }{1 - \Vert \Lambda _\infty ^{-1} \Vert ( \delta _d + | \lambda _k| )} . \end{aligned}$$

Hence, by plugging in \(\Vert B^*\Vert = \Vert L_1^\infty \Vert \) we obtain \( \Vert W_b \Vert \le \varepsilon \delta _b \). The proof of the estimate \(\Vert W_c\Vert \le \varepsilon \delta _c\) is analogous. Next, we note that

$$\begin{aligned} \Vert P_b\Vert ,\Vert P_b^{-1}\Vert&\le 1+\varepsilon \delta _b&\Vert P_c\Vert ,\Vert P_c^{-1}\Vert&\le 1+\varepsilon \delta _c . \end{aligned}$$

By Lemma B.2 we have

$$\begin{aligned} (P_cP_b)^{-1}( M_1 + M_2)( P_cP_b)&= M_3 +M_4 + (P_b P_b)^{-1} M_2 (P_c P_b), \end{aligned}$$
(91)

where

$$\begin{aligned} M_3&:= \left( \begin{matrix} \Lambda _1 &{} 0 \\ 0 &{} \Lambda _\infty + L_\infty ^\infty -W_c L_1^\infty ( I_{\infty } + W_c W_b ) \end{matrix} \right) , \\ M_4&:= \left( \begin{matrix} (I_N + W_b W_c) L_1^\infty W_c &{} L_1^\infty W_c W_b + W_bW_c L_1^\infty (Id + W_c W_b) \\ -W_c L_1^\infty W_c &{} 0 \end{matrix} \right) . \end{aligned}$$

For \( ( x_N , x_\infty ) \in {\mathbb {C}}^N \times X_\infty \) we see that

$$\begin{aligned} e^{M_3 t} (x_N , x_\infty )&= \left( e^{\Lambda _1 t}x_N, e^{(\Lambda _\infty + L_\infty ^\infty -W_c L_1^\infty ( I_{\infty } + W_c W_b )) t} x_\infty \right) . \end{aligned}$$

We also have \( \Vert L_\infty ^\infty -W_c L_1^\infty ( I_{\infty } + W_c W_b ) \Vert \le \delta _d + \varepsilon \delta _b \delta _c (1 + \varepsilon _b \varepsilon _c)\). By applying the estimate (86) we obtain, for all \(t \ge 0\),

$$\begin{aligned} \Vert e^{\Lambda _1 t} x_N \Vert&\le C_1 e^{\mu _1 t}\Vert x_N \Vert , \\ \Vert e^{(\Lambda _\infty + L_\infty ^\infty -W_c L_1^\infty ( I_{\infty } + W_c W_b )) t} x_\infty \Vert&\le C_\infty e^{(\mu _\infty + C_\infty [ \delta _d + \varepsilon \delta _b \delta _c (1 + \varepsilon _b \varepsilon _c)]) t} \Vert x_\infty \Vert . \end{aligned}$$

From our assumption in (88) that \( \mu _1 > \mu _\infty + C_\infty [\delta _d + \varepsilon \delta _b \delta _c (1 + \varepsilon ^2 \delta _b \delta _c)] \), we obtain, for any p-norm, \(1 \le p \le \infty \), on the product \( {\mathbb {C}}^N \times X_\infty \),

$$\begin{aligned} \Vert e^{ M_3 t } (x_N,x_\infty ) \Vert \le \max \{ C_1, C_\infty \} e^{\mu _1 t} \Vert (x_N,x_\infty ) \Vert . \end{aligned}$$

We may estimate the norm of the components of \(M_4\) as

$$\begin{aligned} \Vert (I_N + W_b W_c) L_1^\infty W_c \Vert&\le \varepsilon \delta _b \delta _c ( 1 + \varepsilon ^2 \delta _b \delta _c) , \\ \Vert -W_c L_1^\infty W_c \Vert&\le \varepsilon ^2 \delta _b \delta _c^2 , \\ \Vert L_1^\infty W_c W_b + W_bW_c L_1^\infty (Id + W_c W_b)\Vert&\le \varepsilon ^2 \delta _b^2 \delta _c ( 2 + \varepsilon ^2 \delta _b \delta _c) . \end{aligned}$$

We then obtain the bound

$$\begin{aligned} \Vert M_4\Vert \le \Delta := \varepsilon \delta _b \delta _c \left( 1 + \varepsilon (2 \delta _b + \delta _c) + \varepsilon ^2 \delta _b \delta _c (1 + \varepsilon \delta _b) \right) \end{aligned}$$

by summing the component bounds.

We now perform the final estimate. By using (91) we obtain

$$\begin{aligned} e^{Mt}&= (P_cP_b) \exp \left\{ \left[ M_3+M_4 + (P_cP_b)^{-1}M_2(P_cP_b)\right] t \right\} (P_cP_b)^{-1} . \end{aligned}$$

By then applying (86) to the sum of \( M_3\) and the bounded operator \(M_4 + (P_cP_b)^{-1}M_2(P_cP_b)\) we obtain, with \(C_{1,\infty } := \max \{C_1,C_\infty \} \),

$$\begin{aligned} \Vert e^{Mt}\Vert&\le \Vert P_cP_b\Vert \cdot \Vert (P_cP_b)^{-1}\Vert C_{1,\infty } \exp \left\{ \mu _1 + C_{1,\infty } \left\| M_4 + (P_cP_b)^{-1}M_2 (P_cP_b) \right\| t \right\} . \end{aligned}$$

Defining \(C_s = \max \{ C_1, C_\infty \} (1+\varepsilon \delta _b)^2 ( 1 + \varepsilon \delta _c)^2 \) and plugging in our bounds, we finally infer

$$\begin{aligned} \Vert e^{Mt} \Vert \le C_s e^{( \mu _1 + C_s \delta _a+ \Delta \max \{ C_1, C_\infty \} )t} . \end{aligned}$$

\(\square \)

Remark B.3

If we use the \(p=1\) norm for the product space \( {\mathbb {C}}^N \times X_\infty \) then our bound for \( \Delta \) can be sharpened to

$$\begin{aligned} \Vert M_4\Vert \le \varepsilon \delta _b \delta _c \max \left\{ 1 + \varepsilon \delta _c(1 + \varepsilon \delta _b ) , \varepsilon \delta _b ( 2 + \varepsilon ^2 \delta _b \delta _c) \right\} . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berg, J.B.v.d., Jaquette, J. & James, J.D.M. Validated Numerical Approximation of Stable Manifolds for Parabolic Partial Differential Equations. J Dyn Diff Equat 35, 3589–3649 (2023). https://doi.org/10.1007/s10884-022-10146-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-022-10146-1

Keywords

Mathematics Subject Classification

Navigation