Skip to main content
Log in

Ultrastructure of the anal organ of Musca domestica larvae (Insecta, Diptera) in relation to ion transport

  • Published:
Zoomorphology Aims and scope Submit manuscript

Summary

The anal organ of full-grown, third-instar larvae of Musca domestica is situated ventrally in the last segment and consists of two symmetrical epithelial plates with saddle-shaped features, encircling the anus. Structural studies using light and electron microscopy have revealed that in the area of the anal organ the epidermal cells and the overlying cuticle differ markedly from those of the adjacent normal larval integument. The fine structure of the cells in the region of the anal chloride epithelium indicates that these cells have to be regarded as epidermal cells specialized for transport. Considering the electron microscopy results in connection with the histochemical location of chloride exclusively in this epithelial area, it has been suggested that the larval anal organ of Musca domestica is involved in the active transport of ions from the medium to the haemocoel, and that the epithelium is ion-absorbing. The results of the study are compared with what is known about comparable structures and these comparisons are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashhurst DE (1982) The structure and development of insect connective tissues. In: King RC, Akai H (eds) Insect ultrastructure, vol I. Plenum Press, New York London, pp 313–350

    Google Scholar 

  • Berridge MJ, Gupta BL (1967) Fine-structural changes in relation to ion and water transport in the rectal papillae of the blowfly, Calliphora. J Cell Sci 2:89–112

    Google Scholar 

  • Berridge MJ, Gupta BL (1968) Fine structural localization of adenosine triphosphatase in the rectum of Calliphora. J Cell Sci 3:17–32

    Google Scholar 

  • Berridge MJ, Gupta BL, Hall TA, Maddrell SHP, Moreton RB, Wall BJ (1976) Electron microprobe studies of electrolyte distribution in fluid transporting epithelia. J Physiol 266:32–33

    Google Scholar 

  • Berridge MJ, Oschman JL (1969) A structural basis for fluid secretion by malpighian tubules. Tissue Cell 1:247–272

    Google Scholar 

  • Berridge MJ, Oschman JL (1972) Transporting epithelia. Academic Press, New York London

    Google Scholar 

  • Bradley TJ (1984) Mitochondrial placement and function in insect ion-transporting cells. Am Zool 24:157–167

    Google Scholar 

  • Bradley TJ (1985) The Excretory System: Structure and Physiology. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 4. Academic Press, New York London, pp 421–465

    Google Scholar 

  • Brück E, Komnick H (1971) Histochemischer Nachweis der Penetrationswege von Salzlösungen durch die isolierte Insektenkutikula. J Insect Physiol 17:2027–2034

    Google Scholar 

  • Brück E, Stockem W (1972) Morphologische Untersuchungen an der Cuticula von Insekten: I. Die Feinstruktur der larvalen Cuticula von Blaberus trapezoideus Burm. Z Zellforsch 132:403–416

    Google Scholar 

  • Chen PS, Brugger C (1973) An electron microscope study of the anal organs of Drosophila-larvae. Experientia 29:233–235

    Google Scholar 

  • Cioffi M (1979) The morphology and fine structure of the larval midgut of a moth (Manduca sexta) in relation to active ion transport. Tissue Cell 11:467–479

    Google Scholar 

  • Cioffi M (1984) Comparative ultrastructure of arthropod transporting epithelia. Am Zool 24:139–156

    Google Scholar 

  • Copeland E (1964) A mitochondrial pump in the cells of the anal papillae of mosquito larvae. J Cell Biol 23:253–263

    Google Scholar 

  • Credland PF (1976) A structural study of the anal papillae of the midge Chironomus riparius (Meigen) (Diptera; Chironomidae). Cell Tissue Res 166:531–540

    Google Scholar 

  • Deutsches Arzneibuch Amtliche Ausgabe, 9th edn. (1986) Deutscher Apotheker Verlag, Stuttgart: Govi-Verlag, Frankfurt

    Google Scholar 

  • Edney EB (1977) Water balance in land arthropods. Zoophysiology and Ecology vol 9. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Edwards HA, Harrison JB (1983) An osmoregulatory syncytium and associated cells in a freshwater mosquito. Tissue Cell 15:271–280

    Google Scholar 

  • Eichelberg D, Wessing A, Polenz A (1972) Stuktur und Funktion der larvalen Analorgane von Drosophila. Cytobiologie 6:410–426

    Google Scholar 

  • Filshie BK (1970) The fine structure and deposition of the larval cuticle of the sheep blowfly (Lucilia cuprina). Tissue Cell 2:479–498

    Google Scholar 

  • Filshie BK (1980) Insect cuticle through the electron microscope — distinguishing fact from artifact. In: Locke M, Smith DS (eds) Insect biology in the future “VBW 80”. Academic Press, New York London, pp 59–77

    Google Scholar 

  • Filshie BK (1982) Fine structure of the cuticle of insects and other arthropods. In: King RC, Akai H (eds) Insect ultrastructure, vol I. Plenum Press, New York London, pp 281–312

    Google Scholar 

  • Flower NE, Walker GD (1979) Rectal papillae in Musca domestica: the cuticle and lateral membranes. J Cell Sci 39:167–186

    Google Scholar 

  • Gloor H (1949) Silver-reducing organ in Drosophila larvae. DIS 23:89

    Google Scholar 

  • Gloor H, Chen PS (1950) Über ein Analorgan bei Drosophila-Larven. Rev Suisse Zool 57:570–576

    Google Scholar 

  • Gnatzy W, Romer F (1984) Cuticle: formation, moulting and control. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument, vol 1: Invertebrates. Springer, Berlin Heidelberg New York, pp 638–684

    Google Scholar 

  • Gupta BL, Berridge MJ (1966a) Fine structural organization of the rectum in the blowfly, Calliphora erythrocephala (Meig.), with special reference to connective tissue, tracheae and neurosecretory innervation in the rectal papillae. J Morphol 120:23–82

    Google Scholar 

  • Gupta BL, Berridge MJ (1966b) A coat of repeating subunits on the cytoplasmic surface of the plasma membrane in the rectal papillae of the blowfly, Calliphora erythr., studied in situ by electron microscopy. J Cell Biol 29:376–382

    Google Scholar 

  • Gupta BL, Hall TA, Maddrell SHP, Moreton RB (1976) Distribution of ions in a fluid-transporting epithelium determined by electron probe X-ray microanalysis. Nature 264:284–287

    Google Scholar 

  • Gupta BL, Hall TA, Moreton RB (1977) Electron probe X-ray microanalysis. In: Gupta BL, Moreton RB, Oschman JL, Wall BJ (eds) Transport of ions and water in animals. Academic Press, London New York, pp 83–143

    Google Scholar 

  • Gupta BL, Hall TA, Naftalin RJ (1978) Microprobe measurement of Na, K and Cl concentration profiles in epithelial cells and intercellular spaces of rabbit ileum. Nature 272:70–73

    Google Scholar 

  • Gupta BL, Wall BJ, Oschman JL, Hall TA (1980) Direct microprobe evidence of local concentration gradients and recycling of electrolytes during fluid absorption in the rectal papillae of Calliphora. J Exp Biol 88:21–47

    Google Scholar 

  • Hackman RH (1984) Cuticle: Biochemistry. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument, vol 1: Invertebrates. Springer, Berlin Heidelberg New York, pp 583–610

    Google Scholar 

  • Harvey WR (1980) Water and ions in the gut. In: Locke M, Smith DS (eds) Insect biology in the future “VBW 80”. Academic Press, London New York, pp 105–124

    Google Scholar 

  • Harvey WR, Cioffi M, Wolfersberger MG (1981) Portasomes as coupling factors in active ion transport and oxidative phosphorylation. Am Zool 21:775–791

    Google Scholar 

  • Harvey WR, Cioffi M, Dow JAT, Wolfersberger MG (1983) Potassium ion transport ATPase in insect epithelia. J Exp Biol 106:91–117

    Google Scholar 

  • Hepburn HR (1985) Structure of the integument. In: Kerkut GA, Gilbert LJ (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 3. Academic Press, London New York, pp 2–58

    Google Scholar 

  • Hollemann AF, Wiberg E (1976) Lehrbuch der anorganischen Chemie. de Gruyter, Berlin

    Google Scholar 

  • Hopkins CR (1967) The fine-structural changes observed in the rectal papillae of the mosquito Aedes aegypti L. and their relation to the epithelial transport of water and inorganic ions. J R Microsc Soc 86:235–252

    Google Scholar 

  • Jander G, Jahr KF, Knoll H (1973) Maßanalyse — Theorie und Praxis der klassischen und der elektrochemischen Titrierverfahren. de Gruyter, Berlin

    Google Scholar 

  • Jarial MS (1987) Ultrastructure of the anal organ of Drosophila larva with reference to ion transport. Tissue Cell 19:559–575

    Google Scholar 

  • Koch HJ (1938) The absorption of chloride ions by the anal papillae of diptera larvae. J Exp Biol 15:152–160

    Google Scholar 

  • Komnick H (1977) Chloride cells and chloride epithelia of aquatic insects. Int Rev Cytol 49:285–329

    Google Scholar 

  • Komnick H, Schmitz M, Wichard W (1975) Cytologische, elektrolyt-histochemische und funktionelle Untersuchungen der analen Chloridepithelien aquatischer Brachycerenlarven (Insecta, Diptera). Cytobiologie 11:448–465

    Google Scholar 

  • Komnick H, Wichard W (1975) Vergleichende Cytologie der Analpapillen, Abdominalschläuche und Tracheenkiemen aquatischer Mückenlarven (Diptera, Nematocera). Z Morphol Tiere 81:323–341

    Google Scholar 

  • Kühnelt W (1949) Über Vorkommen und Verteilung reduzierender Stoffe im Integument der Insekten. Oesterr Zool Z 2:223–241

    Google Scholar 

  • Kümmel G, Zerbst-Boroffka I (1974) Elektronenmikroskopische und physiologische Untersuchungen an den Rectalpolstern von Apis mellifica. Cytobiologie 9:432–459

    Google Scholar 

  • Lechleitner RA, Phillips JE (1988) Anion-stimulated ATPase in locust rectal epithelium. Can J Zool 66:431–438

    Google Scholar 

  • Locke M (1961) Pore canals and related structures in insect cuticles. J Biophys Biochem Cytol 10:589–618

    Google Scholar 

  • Locke M (1974) The structure and formation of the integument in insects. In: Rockstein M (ed) The physiology of Insecta, vol VI. Academic Press, London New York, pp 123–213

    Google Scholar 

  • Locke M (1984) Epidermal Cells. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument, vol 1: Invertebrates. Springer, Berlin Heidelberg New York, pp 502–522

    Google Scholar 

  • Locke M (1985) A structural analysis of post-embryonic development. In: Kerkut GA, Gilbert LJ (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 2. Academic Press, London New York, pp 87–149

    Google Scholar 

  • Marshall AT, Wright A (1973) Detection of diffusible ions in insect osmoregulatory systems by electron probe X-ray microanalysis using scanning electron microscopy and a cryoscopic technique. Micron 4:31–45

    Google Scholar 

  • Meredith J, Phillips JE (1973a) Rectal ultrastructure in salt- and freshwater mosquito larvae in relation to physiological state. Z Zellforsch 138:1–22

    Google Scholar 

  • Meredith J, Phillips JE (1973b) Ultrastructure of anal papillae from a seawater mosquito larva (Aedes togoi T.). Can J Zool 51:349–353

    Google Scholar 

  • Meredith J, Phillips JE (1973c) Ultrastructure of the anal papillae of a saltwater mosquito larva Aedes campestris. J Insect Physiol 19:1157–1172

    Google Scholar 

  • Muirhead-Thomson RC (1937) Observations on the biology and larvae of the Anthomyidae. Parasitology 29:273–358

    Google Scholar 

  • Neville AC (1975) Biology of the arthropod cuticle. Zoophysiol Ecol 4/5 (whole issue)

  • Neville AC (1984) Cuticle: organization. In: Bereiter-Hahn J, Matoltsy AG, Richards KS (eds) Biology of the integument, vol 1. Invertebrates. Springer, Berlin Heidelberg New York, pp 611–625

    Google Scholar 

  • Neville AC, Thomas MG, Zelazny B (1969) Pore canal shape related to molecular architecture of arthropod cuticle. Tissue Cell 1:183–200

    Google Scholar 

  • Noirot C, Noirot-Timothée C (1967) Liaison de mitochondries avec des zones d' adhésion intercellulaires. J Microsc 6:87–90

    Google Scholar 

  • Noirot C, Noirot-Timothée C (1969) Le cuticle proctodéale des Insectes: I. Ultrastructure comparée. Z Zellforsch 101:477–509

    Google Scholar 

  • Nüske H, Wichard W (1971) Die Analpapillen der Köcherfliegenlarven: I. Feinstruktur und histochemischer Nachweis von Natrium und Chlorid bei Philopotamus montanus Donov. Cytobiologie 4:480–486

    Google Scholar 

  • Nüske H, Wichard W (1972) Die Analpapillen der Köcherfliegenlarven: II. Feinstruktur des ionen-transportierenden und respiratorischen Epithels bei Glossosomatiden. Cytobiologie 6:243–249

    Google Scholar 

  • O'Donnell MJ, Maddrell SHP (1983) Paracellular and transcellular routes for water and solute movements across insect epithelia. J Exp Biol 106:231–253

    Google Scholar 

  • Oschman JL (1978) Morphological correlates of transport. In: Giebisch G, Tosteson DC, Ussing HH (eds) Membrane transport in biology: III. Transport across multi-membrane systems. Springer, Berlin Heidelberg New York, pp 55–93

    Google Scholar 

  • Oschman JL, Wall BJ (1969) The structure of the rectal pads of Periplaneta americana L. with regard to fluid transport. J Morphol 127:475–510

    Google Scholar 

  • van Pelt Verkuil E (1978) Increase in acid phosphatase activity in the fat body during larval and pupal development in Calliphora erythrocephala. J Insect Physiol 24:375–382

    Google Scholar 

  • Phillips JE (1980) Epithelial transport and control in recta of terrestrial insects. In: Locke M, Smith DS (eds) Insect biology in the future “VBW 80”. Academic Press, London New York, pp 145–177

    Google Scholar 

  • Phillips JE (1983a) Osmoregulation und Exkretion (Cellular mechanisms and control of excretion in insects: recent advances). Verh Dtsch Zool Ges 76:55–68

    Google Scholar 

  • Phillips JE (1983b) Trends in epithelial transport and control. J Exp Biol 106:3–8

    Google Scholar 

  • Phillips JE (1983c) Endocrine control of salt and water balance: excretion. In: Downer RHG, Laufer H (eds) Endocrinology of insects. Liss, New York, pp 411–425

    Google Scholar 

  • Phillips JE, Bradley TJ (1977) Osmotic and ionic regulation in saline-water mosquito larvae. In: Gupta BL, Moreton RB, Oschman JL, Wall BJ (eds) Transport of ions and water in animals. Academic Press, London New York, pp 709–734

    Google Scholar 

  • Phillips JE, Dockrill AA (1968) Molecular sieving of hydrophilic molecules by the rectal intima of the desert locust (Schistocerca gregaria). J Exp Biol 48:521–532

    Google Scholar 

  • Phillips JE, Hanrahan J, Chamberlin M, Thomson B (1986) Mechanisms and control of reabsorption in insect hindgut. Adv Insect Physiol 19:329–422

    Google Scholar 

  • Schwantes PA (1988) Das larvale Analorgan von Musca domestica — Teil einer osmoregulatorischen Funktionseinheit? Dissertation, University of Giessen

  • Schwantes PA, Eichelberg D (1987) Untersuchungen zur Normogenese von Musca domestica L. (Diptera) und deren Beeinflussung durch gesteigerte osmotische Belastung. Zool Anz 219:1–18

    Google Scholar 

  • Smith DS (1968) Insect cells, their structure and function. Oliver & Boyd, Edinburgh

    Google Scholar 

  • Stobbart RH, Shaw J (1974) Salt and water balance: excretion. In: Rockstein M (ed) The physiology of insecta, vol V. Academic Press, London New York, pp 362–431

    Google Scholar 

  • Stoffolano FG (1970) The anal organ of larvae of Musca autumnalis, M. domestica, and Orthellia caesarion (Diptera: Muscidae). Ann Entomol Soc Am 63:1647–1654

    Google Scholar 

  • Towle DW (1984) Membrane-bound ATPases in arthropod iontransporting tissues. Am Zool 24:177–185

    Google Scholar 

  • Wessing A, Eichelberg D (1973) Elektronenmikroskopische Untersuchungen zur Struktur und Funktion der Rektalpapillen von Drosophila melanogaster. Z Zellforsch 136:415–432

    Google Scholar 

  • Wichard W, Komnick H (1973) Fine structure and function of the abdominal chloride epithelia in caddisfly larvae. Z Zellforsch 136:579–590

    Google Scholar 

  • Wichard W, Komnick H (1974) Feinstruktur und Funktion der Analpapillen aquatischer Schwebfliegenlarven (Diptera: Syrphidae). Entomol Ger 1:1–10

    Google Scholar 

  • Wieczorek H, Wolfersberger MG, Cioffi M, Harvey WR (1986) Cation-stimulated ATPase activity in purified plasma membranes from tobacco hornworm hindgut. Biochim Biophys Acta 857:271–281

    Google Scholar 

  • Wigglesworth VB (1938) The regulation of osmotic pressure and chloride concentration in the haemolymph of mosquito larvae. J Exp Biol 15:235–247

    Google Scholar 

  • Wigglesworth VB (1976) The distribution of lipid in the cuticle of Rhodnius. In: Hepburn HR (ed) The insect integument. Elsevier Scientific, Amsterdam, pp 89–106

    Google Scholar 

  • Wohlfarth-Bottermann KE (1957) Die Kontrastierung tierischer Zellen und Gewebe im Rahmen ihrer elektronenmikroskopischen Untersuchung an ultradünnen Schnitten. Naturwissenschaften 44:287–288

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwantes, P.A. Ultrastructure of the anal organ of Musca domestica larvae (Insecta, Diptera) in relation to ion transport. Zoomorphology 109, 55–69 (1989). https://doi.org/10.1007/BF00312183

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00312183

Keywords

Navigation